RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

TEMPERATURE DEPENDENCES OF ELASTIC PROPERTIES OF CUBIC CRYSTALS OF SIMPLE SUBSTANCES. REVIEW

PII
S30346428S1026351925050016-1
DOI
10.7868/S3034642825050016
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
3-27
Abstract
An review of the temperature dependences of the elasticity characteristics of cubic crystals of simple substances is given. It is shown that the general trend is a decrease in elastic modulus , и with temperature due to the weakening of interatomic bonds due to thermal expansion of the crystal lattice. However, there are also anomalous dependencies, such as an increase in the shear modulus with temperature, observed for BCC crystals of vanadium V, niobium Nb, tantalum Ta and FCC crystals of palladium Pd, platinum Pt. A common feature for the cubic crystals considered, except for BCC chromium Cr, is an increase in Poisson’s ratio v with temperature. The coefficient of elastic anisotropy also shows a general upward trend, but for some crystals, BCC V, Nb, Ta and FCC Al, local minima are observed, and for BCC Cr and FCC Pd, maxima are observed.
Keywords
кубические кристаллы простые вещества температурные зависимости упругих свойств
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
15

References

  1. 1. Berliner R., Fajen O., Smith H.G., Hitterman R.L. Neutron powder-diffraction studies of lithium, sodium, and potassium metal // Phys. Rev. B. 1989. V. 40. № 18. P. 12086–12097. https://doi.org/10.1103/PhysRevB.40.12086
  2. 2. Barrett C.S. X-ray study of the alkali metals at low temperatures // Acta Cryst. 1956. V. 9. № 8. P. 671–677. https://doi.org/10.1107/S0365110X56001790
  3. 3. Ernst G., Artner C., Blaschko O., Krexner G. Low-temperature martensitic phase transition of bcc lithium // Phys. Rev. B. 1986. V. 33. № 9. P. 6465–6469. https://doi.org/10.1103/PhysRevB.33.6465
  4. 4. Pichl W., Krystian M. Martensitic transformation and mechanical deformation of high- purity lithium // Mater. Sci. UNK. A. 1999. V. 273–275. P. 208–212. https://doi.org/10.1016/S0921-5093 (99)00372-X
  5. 5. Nash H.C., Smith C.S. Single-crystal elastic constants of lithium // J. Phys. Chem. Solids. 1959. V. 9. № 2. P. 113–118. https://doi.org/10.1016/0022-3697 (59)90201-X
  6. 6. Slotwinski T., Trivisonno J. Temperature dependence of the elastic constants of single crystal lithium // J. Phys. Chem. Solids. 1969. V. 30. № 5. P. 1276–1278. https://doi.org/10.1016/0022-3697 (69)90386-2
  7. 7. Marquardt W.R., Trivisonno J. Low temperature elastic constants of potassium // J. Phys. Chem. Solids. 1965. V. 26. № 2. P. 273–278. https://doi.org/10.1016/0022-3697 (65)90155-1
  8. 8. Fritsch G., Bube H. The elastic constants of potassium in the temperature region from 20 up to 63°C // Phys. Status Solidi A. 1975. V. 30. № 2. P. 571–576. https://doi.org/10.1002/pssa.2210300217
  9. 9. Gutman E.J., Trivisonno J. Temperature dependence of the elastic constants of rubidium // J. Phys. Chem. Solids. 1967. V. 28. № 5. P. 805–809. https://doi.org/10.1016/0022-3697 (67)90009-1
  10. 10. Kollarits F.J., Trivisonno J. Single-crystal elastic constants of cesium // J. Phys. Chem. Solids. 1968. V. 29. № 12. P. 2133–2139. https://doi.org/10.1016/0022-3697 (68)90009-7
  11. 11. Daniels W.B. Pressure variation of the elastic constants of sodium // Phys. Rev. 1960. V. 119. № 4. P. 1246–1252. https://doi.org/10.1103/PhysRev.119.1246
  12. 12. Diederich M.E., Trivisonno J. Temperature dependence of the elastic constants of sodium // J. Phys. Chem. Solids. 1966. V. 27. № 4. P. 637–642. https://doi.org/10.1016/0022-3697 (66)90214-9
  13. 13. Martinson R. H. Variation of the elastic constants of sodium with temperature and pressure // Phys. Rev. 1969. V. 178. № 3. P. 902–913. https://doi.org/10.1103/PhysRev.178.902
  14. 14. Fritsch G., Geipel F., Prasetyo A. The elastic constants of sodium from 20 to 95°C // J. Phys. Chem. Solids. 1973. V. 34. № 11. P. 1961–1969. https://doi.org/10.1016/S0022-3697 (73)80118-0
  15. 15. Ho P.S., Ruoff A.L. Analysis of ultrasonic data and experimental equation of state for sodium // J. Phys. Chem. Solids. 1968. V. 29. № 12. P. 2101–2111. https://doi.org/10.1016/0022-3697 (68)90005-X
  16. 16. Епишин А.И., Лисовенко Д.С. Анализ упругих свойств кубических кристаллов простых веществ с использованием диаграммы A–v // известия. РАН. МТТ. 2025. № 4. С. 249–258. https://doi.org/10.31857/S1026351925040047
  17. 17. Bolef D.I., Smith R.E., Miller J.G. Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion // Phys. Rev. B. 1971. V. 3. № 12. P. 4100–4108. https://doi.org/10.1103/PhysRevB.3.4100
  18. 18. Walker E. Anomalous temperature behaviour of the shear elastic constant C44 in vanadium // Solid State Commun. 1978. V. 28. № 7. P. 587–589. https://doi.org/10.1016/0038-1098 (78)90495-7
  19. 19. Talmor K.Y., Walker E., Steinemann S. Elastic constants of niobium up to the melting point // Solid State Commun. 1977. V. 23. № 9. P. 649–651. https://doi.org/10.1016/0038-1098 (77)90541-5
  20. 20. Armstrong P.E., Dickinson J.M., Brown H.L. Temperature dependence of the elastic coefficients of niobium (columbium) // Trans. Metal. Soc. AIME. 1966. V. 236. P. 1404–1408.
  21. 21. Featherston F.H., Neighbours J.R. Elastic constants of tantalum, tungsten, and molybdenum // Phys. Rev. 1963. V. 130. № 4. P. 1324–1333. https://doi.org/10.1103/PhysRev.130.1324
  22. 22. Walker E., Bujard P. Anomalous temperature behaviour of the shear elastic constant C44 in tantalum // Solid State Commun. 1980. V. 34. № 8. P. 691–693. https://doi.org/10.1016/0038-1098 (80)90957-6
  23. 23. Bolef D.I., De Klerk J. Elastic constants of single crystal Mo and W between 77 and 500 k // J. Appl. Phys. 1962. V. 33. № 7. P. 2311–2314. https://doi.org/10.1063/1.1728952
  24. 24. Bolef D.I., de Klerk J. Anomalies in the elastic constants and thermal expansion of chromium single crystals // Phys. Rev. 1963. V. 129. № 3. P. 1063–1067. https://doi.org/10.1103/PhysRev.129.1063
  25. 25. Palmer S.B., Lee E.W. The elastic constants of chromium // Phil. Mag. 1971. V. 24. № 188. P. 311–318. https://doi.org/10.1080/14786437108227390
  26. 26. Васильев А.Н., Савченко Ю.И., Георгиус Р.Ш., Фосетт Е. влияние магнитного поля на упругие свойства антиферромагнитного хрома // вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 1993. Т. 34. № 2. С. 42–45. http://vmu.phys.msu.ru/toc/1993/2
  27. 27. Steinitz M.O., Schwartz L.H., Marcus J.A., Fawcett E., Reed W. Lattice anisotropy in antiferromagnetic chromium // Phys. Rev. Lett. 1969. V. 23. № 17. P. 979–982. https://doi.org/10.1103/PhysRevLett.23.979
  28. 28. Alers G.A., Neighbours J.R., Sato H. Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy // J. Phys. Chem. Solids. 1960. V. 13. № 1–2. P. 40–55. https://doi.org/10.1016/0022-3697 (60)90125-6
  29. 29. Renaud Ph., Steinemann S.G. High temperature elastic constants of fcc Fe-Ni invar alloys // Physica B: Condensed Matter. 1990. V. 16. № 1–3. P. 75–78. https://doi.org/10.1016/0921-4526 (89)90107-5
  30. 30. Rayne J.A., Chandrasekhar B.S. Elastic constants of iron from 4.2 to 300°k // Phys. Rev. 1961. V. 122. № 6. P. 1714–1716. https://doi.org/10.1103/PhysRev.122.1714
  31. 31. Dever D.J. Temperature dependence of the elastic constants in α-iron single crystals: relationship to spin order and diffusion anomalies // J. Appl. Phys. 1972. V. 43. № 8. P. 3293–3301. https://doi.org/10.1063/1.1661710
  32. 32. Overton W.C., Gaffney J. Temperature variation of the elastic constants of cubic elements. I. Copper // Phys. Rev. 1955. V. 98. № 4. P. 969–977. https://doi.org/10.1103/PhysRev.98.969
  33. 33. Chang Y.A., Himmel L. Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature // J. Appl. Phys. 1966. Vol. 37. № 9. P. 3567–3572. https://doi.org/10.1063/1.1708903
  34. 34. Neighbours J.R., Alers G.A. Elastic constants of silver and gold // Phys. Rev. 1958. V. 111. № 3. P. 707–712. https://doi.org/10.1103/PhysRev.111.707
  35. 35. Collard S.M., McLellan R.B. High-temperature elastic constants of gold single-crystals // Acta Metall. Mater. 1991. V. 39. № 12. P. 3143–3151. https://doi.org/10.1016/0956-7151 (91)90048-6
  36. 36. MacFarlane R.E., Rayne J.A., Jones C.K. Anomalous temperature dependence of shear modulus c44 for platinum // Phys. Lett. 1965. V. 18. № 2. P. 91–92. https://doi.org/10.1016/0031-9163 (65)90659-1
  37. 37. Collard S.M., McLellan R.B. High-temperature elastic constants of platinum single crystals // Acta Metall. Mater. 1992. V. 40. № 4. P. 699–702. https://doi.org/10.1016/0956-7151 (92)90011-3
  38. 38. Rayne J.A. Elastic constants of palladium from 4.2-300°k // Phys. Rev. 1960. V. 118. № 6. P. 1545–1549. https://doi.org/10.1103/PhysRev.118.1545
  39. 39. Walker E., Ortelli J., Peter M. Elastic constants of monocrystalline alloys of Pd-Rh and Pd-Ag between 4.2°k and 300°k // Phys. Lett. A. 1970. V. 31. № 5. P. 240–241. https://doi.org/10.1016/0375-9601 (70)90949-7
  40. 40. Weinmann C., Steinemann S. Lattice and electronic contributions to the elastic constants of palladium // Solid State Commun. 1974. V. 15. № 2. P. 281–285. https://doi.org/10.1016/0038-1098 (74)90758-3
  41. 41. Yoshihara M., McLellan R.B., Brotzen F.R. The high-temperature elastic properties of palladium single crystals // Acta Metall. 1987. V. 35. № 3. P. 775–780. https://doi.org/10.1016/0001-6160 (87)90204-5
  42. 42. Kamm G.N., Alers G.A. Low-temperature elastic moduli of aluminum // J. Appl. Phys. 1964. V. 35. № 2. P. 327–330. https://doi.org/10.1063/1.1713309
  43. 43. Gerlich D., Fisher E.S. The high temperature elastic moduli of aluminum // J. Phys. Chem. Solids. 1969. V. 30. № 5. P. 1197–1205. https://doi.org/10.1016/0022-3697 (69)90377-1
  44. 44. Waldorf D.L., Alers G.A. Low-temperature elastic moduli of lead // J. Appl. Phys. 1962. V. 33. № 11. P. 3266–3269. https://doi.org/10.1063/1.1931149
  45. 45. Vold C.L., Glicksman M.E., Kammer E.W., Cardinal L.C. The elastic constants for single- crystal lead and indium from room temperature to the melting point // J. Phys. Chem. Solids. 1977. V. 38. № 2. P. 157–160. https://doi.org/10.1016/0022-3697 (77)90159-7
  46. 46. Armstrong P.E., Carlson O.N., Smith J.F. Elastic constants of thorium single crystals in the range 77–400°k // J. Appl. Phys. 1959. V. 30. № 1. P. 36–41. https://doi.org/10.1063/1.1734971
  47. 47. Zouboulis E.S., Grimsditch M., Ramdas A.K., Rodriguez S. Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study // Phys. Rev. B. 1998. V. 57. № 5. P. 2889–2896. https://doi.org/10.1103/PhysRevB.57.2889
  48. 48. Епишин А.И., Лисовенко Д.С. Экстремальные значения коэффициента Пуассона кубических кристаллов. // ЖТФ. 2016. Т. 86. № 10. С. 74–82. https://doi.org/10.1134/S1063784216100121
  49. 49. Епишин А.И., Лисовенко Д.С. влияние кристаллической структуры и типа межатомной связи на упругие свойства одноатомных и двухатомных кубических кристаллов // известия. РАН. МТТ. 2022. № 6. С. 79–96. https://doi.org/10.31857/S0572329922060058
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library