RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Mechanics of Solids in Non-Orthogonal Space-Time

PII
S30346428S1026351925040024-1
DOI
10.7868/S3034642825040024
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
35-43
Abstract
The paper is concerned with derivation and application of basic equations of solid mechanics in the special coordinate frame in which the space and the time coordinate axes are not orthogonal. In this frame, the object velocity, in principle, cannot reach the velocity of light. The equations which generalize the classical Lorentz transformations in special relativity are obtained. They demonstrate that, in contrast to the classical theory, the length of the line element cannot become zero and the body mass cannot become infinitely high. As application, the general relativity spherically symmetric problem of gravitational collapse and expansion is considered. The external solution for an empty space and the internal solution for a pressure-free sphere are obtained in the proposed non-orthogonal coordinate frame.
Keywords
неортогональные координаты формулы Лоренца сферически симметричная задача релятивистской механики
Date of publication
21.03.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Логунов А.А. Лекции по теории относительности и гравитации: Современ. анализ пробл. М.: Наука, 1987. 272 с.
  2. 2. Vasiliev V.V., Fedorov L.V. Gravitation collapse and expansion in the Newton theory and general relativity // J. Mod. Phys. 2025. V. 16. № 2. P. 294–309. http://doi.org/10.4236/jmp.2025.162015
  3. 3. Васильев В.В., Федоров Л.В. Принципиальные проблемы релятивистской механики деформируемого твердого тела // Изв. РАН. МТТ. 2023. № 6. С. 125–135. http://doi.org/10.31857/S0572329923700083
  4. 4. Вайнберг С. Космология. М.: УРСС Книжный дом “Либриком”, 2013. 608 с.
  5. 5. Васильев В.В., Федоров Л.В. Сферически симметричная статическая задача общей теории относительности для сплошной среды // УФН. 2025. Т. 195. №. 2. C. 199–218. https://doi.org/10.3367/UFNr.2024.11.039800
  6. 6. Vasiliev V.V., Fedorov L.V. Spherically symmetric problem of general relativity for a fluid sphere // J. Mod. Phys. 2024. V. 15. № 4. P. 401–415. https://doi.org/10.4236/jmp.2024.154017
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library