- PII
- S30346428S1026351925040074-1
- DOI
- 10.7868/S3034642825040074
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 128-155
- Abstract
- A quaternion solution to the problem of optimal rotation of a rigid body (spacecraft) from an arbitrary initial to a designated angular position in the presence of constraints on the control variables is presented. To optimize the control process, a combined quality functional was used, which combines in a given proportion the sum of time and control efforts spent on the turn, and the integral of the kinetic energy of rotation during the turn. Based on the maximum principle of L.S. Pontryagin and quaternion models of controlled motion of a rigid body, a solution to the problem was obtained. The properties of optimal motion are disclosed in analytical form. Formalized equations and calculation formulas are recorded to build an optimal rotation program. Analytical equations and relations for finding optimal control are provided. Key relations determining the optimal values of the parameters of the rotation control algorithm are given. Also, a constructive scheme for solving the boundary-value problem of the maximum principle for arbitrary rotation conditions (initial and final positions and moments of inertia of a rigid body) is presented. For a dynamically symmetric rigid body, a solution to the reorientation problem in closed form is obtained. Numerical examples and the results of mathematical modeling are presented, confirming the practical feasibility of the developed method for controlling the attitude of a spacecraft.
- Keywords
- кватернионы управление ориентацией принцип максимума комбинированный критерий качества управляющие функции алгоритм управления краевая задача
- Date of publication
- 31.01.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Sinitsin L.I., Kramlikh A.V. Synthesis of the optimal control law for the reorientation of a nanosatellite using the procedure of analytical construction of optimal regulators // J. Phys. Conf. Ser. V. 1745. 2021. P. 012053. https://doi.org/10.1088/1742-6596/1745/1/012053
- 2. Велищанский М.А., Крищенко А.П., Ткачев С.Б. Синтез алгоритмов переориентации космического аппарата на основе концепции обратной задачи динамики // Изв. РАН. ТиСУ. 2003. № 5. С. 156–163.
- 3. Junkins J.L., Turner J.D. Optimal Spacecraft Rotational Maneuvers. Elsevier. USA, 1986. 515 p.
- 4. Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в желаемое угловое положение // Изв. РАН. ТиСУ. 2018. № 5. С. 30–41. https://doi.org/10.31857/S000233880002843-6
- 5. Scrivener S., Thompson R. Survey of Time-optimal Attitude Maneuvers // J. Guidance, Control and Dynamics. 1994. V. 17. № 2. P. 225–233. https://doi.org/10.2514/3.21187
- 6. Zhou H., Wang D., Wu B., Poh E.K. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Control. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1080/00207179.2012.688873
- 7. Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в гравитационно-устойчивое положение // Доклады Академии наук. 2018. Т. 480. № 6. С. 671–675. https://doi.org/10.7868/S0869565218180081
- 8. Левский М.В. Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6. С. 144–157.
- 9. Shen H., Tsiotras P. Time-optimal control of axi-symmetric rigid spacecraft with two controls // AIAA J. Guidance, Control and Dynamics. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436
- 10. Молоденков А.В., Сапунков Я.Г. Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2. С. 131–147. https://doi.org/10.7868/S0002338818020117
- 11. Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3. С. 352–360.
- 12. Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973. 320 с.
- 13. Айпанов Ш.А., Жакимов А.Т. Метод разделения переменных и его применение для задачи оптимального разворота космического аппарата // Космич. исслед. 2020. Т. 58. № 1. С. 73–84. https://doi.org/10.31857/S002342062001001X
- 14. Стрелкова Н.А. Об оптимальной переориентации твердого тела // Проблемы механики управляемого движения. Нелинейные динамические системы. Пермь. ПГУ. 1990. С. 115–133.
- 15. Левский М.В. Кинематически оптимальное управление переориентацией космического аппарата // Изв. РАН. ТиСУ. 2015. № 1. С. 119–136. https://doi.org/10.7868/S0002338814050114
- 16. Зелепукина О.В., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента динамически симметричного твердого тела // Изв. РАН. МТТ. 2011. № 4. С. 31–49.
- 17. Бирюков В.Г., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента твердого тела // Изв. РАН. МТТ. 2014. № 5. С. 3–21.
- 18. Левский М.В. Синтез оптимального управления терминальной ориентацией космического аппарата с использованием метода кватернионов // Изв. РАН. МТТ. 2009. № 2. С. 7–24.
- 19. Levskii M.V. About method for solving the optimal control problems of spacecraft spatial orientation // Problems of Nonlinear Analysis in Engineering Systems. 2015. V. 21. № 2. P. 61–75.
- 20. Молоденков А.В., Сапунков Я.Г. Аналитическое решение задачи оптимального разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2016. № 6. С. 129–145. https://doi.org/10.7868/S0002338816060093
- 21. Молоденков А.В., Сапунков Я.Г. Аналитическое квазиоптимальное решение задачи поворота осесимметричного твердого тела с комбинированным функционалом // Изв. РАН. ТиСУ. 2020. № 3. С. 39–49. https://doi.org/10.31857/S0002338820030105
- 22. Сапунков Я.Г., Молоденков А.В. Аналитическое решение задачи оптимального в смысле комбинированного функционала разворота осесимметричного космического аппарата // Автоматика и телемеханика. 2021. № 7. С. 86–106. https://doi.org/10.31857/S0005231021070059
- 23. Молоденков А.В., Сапунков Я.Г. Аналитическое приближенное решение задачи оптимального разворота космического аппарата при произвольных граничных условиях // Изв. РАН. ТиСУ. 2015. № 3. С. 131–141. https://doi.org/10.7868/S0002338815030142
- 24. Левский М.В. Синтез оптимального управления ориентацией космического аппарата с использованием комбинированного критерия качества // Изв. РАН. ТиСУ. 2019. № 6. С. 139–162. https://doi.org/10.1134/S0002338819040103
- 25. Левский М.В. Управление разворотом твердого тела (космического аппарата) с комбинированным критерием оптимальности на основе кватернионов // Изв. РАН. МТТ. 2023. № 5. С. 58–78. https://doi.org/10.31857/S0572329922600566
- 26. Левский М.В. Кватернионное решение задачи оптимального управления ориентацией твердого тела (космического аппарата) с комбинированным критерием качества // Изв. РАН. МТТ. 2024. № 1. С. 197–222. https://doi.org/10.31857/S1026351924010115
- 27. Левский М.В. Аналитическое решение задачи оптимального в смысле комбинированного критерия качества управления переориентацией твердого тела (космического аппарата) на основе кватернионов // Изв. РАН. МТТ. 2025. № 1. С. 49–74. https://doi.org/10.31857/S1026351925010035
- 28. Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Mathematics in Engineering, Science and Aerospace. 2018. V. 9. № 1. P. 47–63.
- 29. Levskii M.V. Special aspects in attitude control of a spacecraft, equipped with inertial actuators // J. Computer Science Applications and Information Technology. 2017. V. 2. № 4. P. 1–9. https://doi.org/10.15226/2474-9257/2/4/00121
- 30. Горшков О.А., Муравьев В.А., Шагайда А.А. Холловские и ионные плазменные двигатели для космических аппаратов. М.: Машиностроение, 2008. 280 с.
- 31. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1983. 392 с.
- 32. Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.
- 33. Любушин А.А. О применении модификаций метода последовательных приближений для решения задач оптимального управления // ЖВМиМФ. 1982. Т. 22. № 1. С. 30–35.
- 34. Левский М.В. Система управления пространственным разворотом космического аппарата. Патент на изобретение РФ № 2006431 // Бюллетень “Изобретения. Заявки и патенты”. 1994. № 2. Опубликован 20.01.1994. С. 49–50.
- 35. Левский М.В. Способ управления разворотом космического аппарата и система для его реализации. Патент на изобретение РФ № 2114771 // Бюллетень “Изобретения. Заявки и патенты”. 1998. № 19. Опубликован 10.07.1998. С. 234–236.
- 36. Смольников Б.А. Обобщение Эйлерова случая движения твердого тела // ПММ. 1967. Т. 31. Вып. 2. С. 735–736.
- 37. Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 328 с.
- 38. Левский М.В. Устройство формирования параметров регулярной прецессии твердого тела. Патент на изобретение РФ № 2146638 // Бюллетень “Изобретения. Заявки и патенты”. 2000. № 8. Опубликован 20.03.2000. С. 148.
- 39. Кульков В.М., Обухов В.А., Егоров Ю.Г., Белик А.А., Крайнов А.М. Сравнительная оценка эффективности применения перспективных типов электроракетных двигателей в составе малых космических аппаратов // Вестн. Самарск. гос. аэрокосмического ун-та. 2012. № 3 (34). С. 187–195.