RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

HEAT-RESISTANT COATINGS BASED ON SILICON CARBIDE ON GRAPHITE

PII
S30346428S1026351925030148-1
DOI
10.7868/S3034642825030148
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
270-288
Abstract
A method for forming heat-resistant silicon carbide coatings on graphite products is proposed and investigated. The coating is formed by simultaneous occurrence of several chemical reactions between the silicon melt, carbon monoxide and the near-surface region of graphite at temperatures slightly exceeding the melting point of silicon. The formed coating has a thickness of up to several millimeters, has high mechanical strength and hardness. The samples were examined by various methods, including Raman spectroscopy, SEM. Thermal resistance of the obtained coatings was studied by testing in high-enthalpy subsonic air flows. It was shown that the coatings withstand such exposure at temperatures up to 1750C for 30 min. Mechanisms of self-healing of the coating under the influence of oxygen at high temperature were revealed.
Keywords
покрытие термохимическая стойкость разрушение ВЧ-плазмотрон высокоэнтальпийные дозвуковые потоки воздуха графит карбид кремния
Date of publication
04.01.2025
Year of publication
2025
Number of purchasers
0
Views
10

References

  1. 1. Li J., Dunzik-Gouga M. L., Wang J. Recent advances in the treatment of irradiated graphite: A review // Ann. Nucl. Energy. 2017. V. 110. P. 140-147. https://doi.org/10.1016/j.anucene.2017.06.040
  2. 2. Chung D.D.L. Review graphite // J. Mater. Sci. 2002. V. 37. P. 1475-1489. https://doi.org/10.1023/A:1014915307738
  3. 3. Fallahdoost H., Nouri A., Azimi A. Dual functions of TiC nanoparticles on tribological performance of Al/graphite composites // J. Phys. Chem. Solids. 2016. V. 93. P. 137-144. https://doi.org/10.1016/j.jpcs.2016.02.020
  4. 4. Py X., Olives R., Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material // Int. J. Heat Mass Transfer. 2001. V. 44. № 14. P. 2727-2737. https://doi.org/10.1016/S0017-9310 (00)00309-4
  5. 5. Rozenberg A.S., Sinenko Y.A., Chukanov N.V. Regularities of pyrolytic boron nitride coating formation on a graphite matrix // J. Mater. Sci. 1993. V. 28. P. 5528-5533. https://doi.org/10.1007/BF00367825
  6. 6. Chen Z.B., Bian H., Hu S.P., Song X.G., Niu C.N., Duan X.K. et al. Surface modification on wetting and vacuum brazing behavior of graphite using AgCu filler metal // Surf. Coat. Technol. 2018. V. 348. P. 104-110. https://doi.org/10.1016/j.surfcoat.2018.05.039
  7. 7. Cho Y.J., Summerfield A., Davies A., Cheng T.S., Smith E.F., Mellor C.J. et al. Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy // Sci. Rep. 2016. V. 6. P. 34474. https://doi.org/10.1038/srep34474
  8. 8. Fu Q.G., Li H.J., Shi X.H., Li K.Z., Sun G.D. Silicon carbide coating to protect carbon/ carbon composites against oxidation // Scr. Mater. 2005. V. 52. № 9. P. 923-927. https://doi.org/10.1016/j.scriptamat.2004.12.029
  9. 9. Wang R.Q., Zhu S.Z., Huang H.B., Wang Z.F., Liu Y.B., Ma Z., Qian F. Low-pressure plasma spraying of ZrB2-SiC coatings on C/C substrate by adding TaSi2 // Surf. Coat. Technol. 2021. V. 420. P. 127332. https://doi.org/10.1016/j.surfcoat.2021.127332
  10. 10. Liu X.F., Huang Q.Z., Su Z.A., Jiang J.X. Preparation of SiC coating by chemical vapor reaction // J. Chin. Ceram. Soc. 2004. V. 32. № 7. P. 906-910.
  11. 11. Kang P., Zhang B., Chen G., Wu G. Synthesis of nanostructured SiC coatings on carbon fibres by in situ reaction sintering with milled powders // Surf. Coat. Technol. 2010. V. 205. № 2. P. 294-298. https://doi.org/10.1016/j.surfcoat.2010.06.043
  12. 12. Okuni T., Miyamoto Y., Abe H., Naito M. Joining of silicon carbide and graphite by spark plasma sintering // Ceram.Int. 2014. V. 40. № 1. P. 1359-1363. https://doi.org/10.1016/j.ceramint.2013.07.017
  13. 13. Lee J.E., Kim B.G., Yoon J.Y., Ha M.T., Lee M.H., Kim Y. et al. The role of an SiC interlayer at a graphite-silicon liquid interface in the solution growth of SiC crystals // Ceram.Int. 2016. V. 42. № 10. P. 11611-11618. https://doi.org/10.1016/j.ceramint.2016.04.060
  14. 14. Zhu Q., Qiu X., Ma C. Oxidation resistant SiC coating for graphite materials // Carbon. 1999. V. 37. № 9. P. 1475-1484. https://doi.org/10.1016/S0008-6223 (99)00010-X
  15. 15. Li Y., Wang Q., Fan H., Sang S., Li Y., Zhao L. Synthesis of silicon carbide whiskers using reactive graphite as template // Ceram.Int. 2014. V. 40. № 1. P. 1481-1488. https://doi.org/10.1016/j.ceramint.2013.07.032
  16. 16. Hu L., Zou Y., Li C. H., Liu J. A., Shi Y. S. Preparation of SiC nanowires on graphite paper with silicon powder // Mater. Lett. 2020. V. 269. P. 127444. https://doi.org/10.1016/j.matlet.2020.127444
  17. 17. Al-Ruqeishi M.S., Nor R.M., Amin Y.M., Al-Azri K. Direct synthesis of β-silicon carbide nanowires from graphite only without a catalyst // J. Alloys Compd. 2010. V. 497. № 1-2. P. 272-277. https://doi.org/10.1016/j.jallcom.2010.03.025
  18. 18. Haibo O., Hejun L., Lehua Q., Zhengjia L., Jian W., Jianfeng W. Synthesis of a silicon carbide coating on carbon fibers by deposition of a layer of pyrolytic carbon and reacting it with silicon monoxide // Carbon. 2008. V. 46. № 10. P. 1339-1344. https://doi.org/10.1016/j.carbon.2008.05.018
  19. 19. Grashchenko A.S., Kukushkin S.A., Osipov A.V., Redkov A.V. Formation of composite SiC-C coatings on graphite via annealing Si-melt in CO // Surf. Coat. Technol. 2021. V. 423. P. 127610. https://doi.org/10.1016/j.surfcoat.2021.127610
  20. 20. Гращенко А.С., Кукушкин С.А., Осипов А.В., Редьков А.В. Механические свойства композитного покрытия SiC на графите, полученного методом замещения атомов // Письма в ЖТФ. 2021. Т. 47. № 20. С. 7-10. https://doi.org/10.21883/PJTF.2021.20.51605.18918
  21. 21. Kukushkin S.A., Osipov A.V., Feoktistov N.A. Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: A review // Phys. Solid State. 2014. V. 56. P. 1507-1535. https://doi.org/10.1134/S1063783414080137
  22. 22. Kukushkin S.A., Osipov A.V. A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles // J. Appl. Phys. 2013. V. 113. № 2. P. 024909. https://doi.org/10.1063/1.4773343
  23. 23. Kukushkin S.A., Osipov A.V. Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films // J. Phys. D: Appl. Phys. 2014. V. 47. № 31. P. 313001. https://doi.org/10.1088/0022-3727/47/31/313001
  24. 24. Kukushkin S.A., Osipov A.V. New method for growing silicon carbide on silicon by solidphase epitaxy: Model and experiment // Phys. Solid State. 2008. V. 50. P. 1238. https://doi.org/10.1134/S1063783408070081
  25. 25. Гордеев А.Н., Колесников А.Ф. Новые режимы течения и теплообмена плазмы в высокочастотном индукционном плазмотроне ВГУ-4 // Физико-химическая кинетика в газовой динамике. 2008. № 7. С. 18-18.
  26. 26. Севастьянов В.Г., Симоненко Е.П., Гордеев А.Н., Симоненко Н.П., Колесников А.Ф., Папынов Е.К. и др. Поведение керамического материала HfB2-SiC (45 об. %) в потоке диссоциированного воздуха и анализ спектра излучения пограничного слоя над его поверхностью // Журнал неорганической химии. 2015. Т. 60. № 11. С. 1485-1485. https://doi.org/10.7868/S0044457X15110136
  27. 27. Симоненко Е.П., Симоненко Н.П., Колесников А.Ф., Чаплыгин А.В., Лысенков А.С., Нагорнов И.А. и др. Модификация UHTC состава HfB2-30% SiC графеном (1 об. %) и ее влияние на поведение в сверхзвуковом потоке воздуха // Журнал неорганической химии. 2021. Т. 66. № 9. С. 1314-1325. https://doi.org/10.31857/S0044457X21090142
  28. 28. Симоненко Е.П., Симоненко Н.П., Колесников А.Ф., Чаплыгин А.В., Папынов Е.К., Шичалин О.О. и др. Воздействие сверхзвукового потока азота на керамический материал Ta4HfC5-SiC // Журнал неорганической химии. 2023. Т. 68. № 4. С. 551-559. https://doi.org/10.31857/S0044457X22602358
  29. 29. Tuinstra F., Koenig J.L. Raman spectrum of graphite // J. Chem. Phys. 1970. V. 53. № 3. P. 1126-1130. https://doi.org/10.1063/1.1674108
  30. 30. Nakashima S., Harima H. Raman investigation of SiC polytypes // Phys. Status Solidi A. 1997. V. 162. № 1. P. 39-64. https://doi.org/10.1002/1521-396X (199707)162:139::AID-PSSA393.0.CO;2-L
  31. 31. Китаев Ю.Э., Кукушкин С.А., Осипов А.В., Редьков А.В. Новая тригональная (ромбоэдрическая) фаза SiC: abinitio расчеты, симметрийный анализ и рамановские спектры // ФТТ. 2018. Вып. 10. С. 2030-2035. https://doi.org/10.21883/FTT.2018.10.46534.107
  32. 32. Perova T.S., Kukushkin S.A., Osipov A.V. Raman microscopy and imaging of semiconductor films grown on SiC hybrid substrate fabricated by the method of coordinated substitution of atoms on silicon // Handbook of silicon carbide materials and devices / Ed. Z.C. Feng. Boca Raton: CRC Press, 2022. P. 327-372. https://doi.org/10.1201/9780429198540
  33. 33. Bates J.B. Raman spectra of α and β cristobalite // J. Chem. Phys. 1972. V. 57. № 9. P. 4042-4047. https://doi.org/10.1063/1.1678878
  34. 34. Redkov A.V., Grashchenko A.S., Kukushkin S.A., Osipov A.V., Kotlyar K.P., Likhachev A.I. et al. Studying evolution of the ensemble of micropores in a SiC/Si structure during its growth by the method of atom substitution // Phys. Solid State. 2019. V. 61. P. 299-306. https://doi.org/10.1134/S1063783419030272
  35. 35. Anisimov K.S., Malkov A.A., Malygin A.A. Mechanism of thermal oxidation of silicon carbide modified by chromium oxide structures // Russ. J. Gen. Chem. 2014. V. 84. P. 2375-2381. https://doi.org/10.1134/S1070363214120032
  36. 36. Горский В.В., Гордеев А.Н., Дудкина Т.И. Аэротермохимическая деструкция карбида кремния, омываемого высокотемпературным потоком воздуха // ТВТ. 2012. Т. 50. Вып. 5. С. 692-699.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library