- PII
- S30346428S1026351925030032-1
- DOI
- 10.7868/S3034642825030032
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 3
- Pages
- 38-58
- Abstract
- A complex model of pore annihilation during hot isostatic pressing (HIP), which takes into account the simultaneous action of the mechanisms of material plastic flow and diffusive pore dissolution due to the emission of vacancies by the pore surface, has been proposed. The obtained mathematical equations are applied to analyze the kinetics of pore annihilation in single crystals of the nickel-based superalloy CMSX-4 during HIP used for this alloy in industry. It follows from the analysis that both mechanisms (plastic flow and vacancy diffusion) make comparable contributions to the reduction of pore volume under these conditions. As the HIP pressure increases, the contribution of plastic flow increases, while the contribution of vacancy diffusion decreases. Large pores shrink in volume mainly due to the mechanism of plastic flow, however, at the final stage of pore closure, the mechanism of vacancy diffusion is more active. To ensure reliable pore healing by the vacancy mechanism, HIP should be carried out at a moderate argon pressure in the HIP plant.
- Keywords
- монокристаллы никелевых жаропрочных сплавов пористость горячее изостатическое прессование пластическая деформация диффузия вакансий
- Date of publication
- 26.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Шалин Р.Е., Светлов И.Л., Качанов Е.Б., Толораия В.Н., Гаврилин О.С. Монокристаллы никелевых жаропрочных сплавов. М: Машиностроение, 1997. 333 с.
- 2. Reed R.C. The Superalloys: Fundamentals and applications. Cambridge: Cambridge University Press, 2006. 372 p. https://doi.org/10.1017/CBO9780511541285
- 3. Epishin A., Link T., Brückner U., Portella P.D. Investigation of porosity in single-crystal nickel-base superalloys // Proc. the 7th Liege Conference on Materials for Advanced Power Engineering. FZ Jülich, 2002. P. 217-226.
- 4. Link T., Zabler S., Epishin A. et.al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys // Mat. Sci. Eng. A. 2006. V. 425. P. 47-54. https://doi.org/10.1016/j.msea.2006.03.005
- 5. Epishin A., Link T., Svetlov I.L. et.al. Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys // Int. J. Mater. Res. 2013. V. 104. P. 776-782. https://doi.org/10.3139/146.110924
- 6. Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys // Metall. Trans. A. 1988. V. 19. № 9. P. 2341-2348. https://doi.org/10.1007/BF02645058
- 7. Anton D.L., Giamei A.F. Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy // Mater. Sci. Eng. 1985. V. 76. P. 173-180. https://doi.org/10.1016/0025-5416 (85)90091-7
- 8. Toloraya V.N., Zuev A.G., Svetlov I.L. Effect of conditions of directed solidification and heat treatment on porosity in creep resistant nickel alloy single crystals // Izv. Akad. Nauk SSSR. Metally. 1991. № 5. P. 70-76.
- 9. Fullagar K.P.L., Broomfield R.W., Hulands M. et al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades // J. Eng. Gas Turbines Power. 1996. V. 118. P. 380-388. https://doi.org/10.1115/1.2816600
- 10. Epishin A.I., Link T., Fedelich B. et al. Hot isostatic pressing of single-crystal Ni-base superalloys: mechanism of pore closure and effect on mechanical properties // MATEC Web of Conferences. 2014. V. 14. P. 08003. https://doi.org/10.1051/matecconf/20141408003
- 11. Reed R.C., Cox D.C., Rae C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C // Mater. Sci. Eng. A. 2007. V. 448. № 1-2. P. 88-96. https://doi.org/10.1016/j.msea.2006.11.101
- 12. Epishin A., Fedelich B., Link T. et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling // Mat. Sci. Eng. A. 2013. V. 586. P. 342-349. https://doi.org/10.1016/j.msea.2013.08.034
- 13. Епишин А.И., Бокштейн Б.С., Светлов И.Л. и др. Вакансионная модель аннигиляции пор в процессе горячего изостатического прессования монокристаллов никелевых жаропрочных сплавов // Материаловедение. 2017. № 5. С. 3-12.
- 14. Епишин А.И., Лисовенко Д.С., Алымов М.И. Модель диффузионной аннигиляции газонаполненных сферических пор в процессе горячего изостатического прессования // Известия РАН. МТТ. 2025. № 1. С. 136-157. https://doi.org/10.31857/S1026351925010071
- 15. Čadek J. The back stress concept in power law creep of metals: A review // Mater. Sci. Eng. 1987. V. 94. P. 79-92. https://doi.org/10.1016/0025-5416 (87)90324-7
- 16. Epishin A., Fedelich B., Nolze G. et al. Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature // Metall. Mater. Trans. A. 2018. V. 49. P. 3973-3987. https://doi.org/10.1007/s11661-018-4729-6
- 17. Epishin A.I., Fedelich B., Viguier B. et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C // Mater. Sci. Eng. A. 2021. V. 825. P. 141880. https://doi.org/10.1016/j.msea.2021.141880
- 18. Epishin A., Camin B., Hansen L. et. al. Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing // Adv. Eng. Mater. 2020. V. 23. № 7. P. 2100211. https://doi.org/10.2139/ssrn.3751560
- 19. Klingelhöffer H., Epishin A., Link T. Low cycle fatigue of the single-crystal nickel-base superalloy CMSX-4 - Anistropy and effect of creep damage // Mater. Testing. 2009. V. 51. № 5. P. 291-294. https://doi.org/10.3139/120.110035
- 20. Епишин А.И., Алымов М.И. Деформация и разрушение монокристаллов никелевых жаропрочных сплавов CMSX-4 и CMSX-10 в условиях ползучести и усталостного нагружения // Деформация и разрушение материалов. 2023. № 1. С. 11-18. https://doi.org/10.31044/1814-4632-2023-1-11-18
- 21. Epishin A.I., Nolze G., Alymov M.I. Pore morphology in single crystals of a nickel-based superalloy after hot isostatic pressing // Metall. Mater. Trans. A. 2023. V. 54. P. 371-379. https://doi.org/10.1007/s11661-022-06893-x
- 22. Орлов М.А. Технологическое обеспечение ресурса рабочих лопаток первых ступеней турбины авиационных и наземных газотурбинных двигателей. Дисс. …д-ра тех. наук. М., 2008. 207 с.
- 23. Epishin A., Link T., Portella P.D., Brückner U. Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy // Acta Mater. 2000. V. 48. № 16. P. 4169-4177. https://doi.org/10.1016/S1359-6454 (00)00197-X
- 24. Wilkinson D.S, Ashby M.F Pressure sintering by power law creep // Acta Metallurgica. 1975. V. 23. № 11. P. 1277-1285. https://doi.org/10.1016/0001-6160 (75)90136-4