RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

On the influence of viscous filler on the impact penetration resistance of flexible metamaterials with auxetic properties

PII
S30346428S1026351925020156-1
DOI
10.7868/S3034642825020156
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
267-278
Abstract
The properties of flexible metamaterials with negative Poisson’s ratio (with auxetic structure based on a concave hexagonal cell) to resist normal punching by a rigid spherical impactor were experimentally investigated. Samples with a chiral structure fabricated using a 3D printer and made from thermoplastic polyurethane (TPU 95A plastic), with cells filled with air or gelatin were compared for their ability to reduce the kinetic energy of impactors. The experiments were conducted for two velocity regimes. It was found that gelatin filling of auxetic chiral samples made of TPU 95A plastic (in contrast to previously investigated rigid metamaterials based on PLA plastic) does not lead to enhancement of protective properties. According to the results of the experiments conducted for two speed modes, the most effective in terms of resistance to penetration by the impactor were flexible and lightweight samples made of thermoplastic polyurethane filled with air.
Keywords
метаматериалы ауксетики экспериментальные исследования пробивание жесткие ударники
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
33

References

  1. 1. Lim T.-C. Auxetic Materials and Structures. Singapore: Springer, 2015. https://doi.org/10.1007/978-981-287-275-3
  2. 2. Kolken H.M.A., Zadpoor A.A. Auxetic Mechanical Metamaterials // RSC Adv. 2017. V. 7. № 9. P. 5111–5129. https://doi.org/10.1039/C6RA27333E
  3. 3. Ren X., Das R., Tran P., et al. Auxetic Metamaterials and Structures: A Review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
  4. 4. Wu W., Hu W., Qian G., et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
  5. 5. Городцов В.А., Лисовенко Д.С. Ауксетики среди материалов с кубической анизотропией // Изв. РАН. МТТ. 2020. № 4. С. 7–24. https://doi.org/10.31857/S0572329920040054
  6. 6. Шитикова М.В. Обзор вязкоупругих моделей с операторами дробного порядка, используемых в динамических задачах механики твердого тела // Изв. РАН. МТТ. 2022. № 1. С. 3–40. https://doi.org/10.31857/S0572329921060118
  7. 7. Novak N., Vesenjak M., Ren Z. Auxetic cellular materials-a review // Strojniški vestnik – Journal of Mechanical Engineering. 2016. V. 62. № 9. P. 485–493. https://doi.org/10.5545/sv-jme.2016.3656
  8. 8. Kelkar P.U., Kim H.S., Cho K.-H., et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
  9. 9. Joseph A., Manesh V., Harursampath D. On the application of additive manufacturing methods for auxetic structures: A review // Adv. Manuf. 2021. V. 9. № 3. P. 342–368. https://doi.org/10.1007/s40436-021-00357-y
  10. 10. Иванова С.Ю., Осипенко К.Ю., Кузнецов В.А., Соловьев Н.Г., Баничук Н.В., Лисовенко Д.С. Экспериментальное исследование свойств ауксетических и неауксетических метаматериалов из металла при проникании в них жестких ударников // Изв. РАН. МТТ. 2023. № 2. С. 176–180. https://doi.org/10.31857/S0572329922600773
  11. 11. Иванова С.Ю., Осипенко К.Ю., Демин А.И., Баничук Н.В., Лисовенко Д.С. Изучение свойств метаматериалов с отрицательным коэффициентом Пуассона при пробивании жестким ударником // Изв. РАН. МТТ. 2023. № 5. С. 120–130. https://doi.org/10.31857/S0572329923600366
  12. 12. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Экспериментальное исследование свойств метаматериалов на основе PLA пластика при пробивании жестким ударником // Изв. РАН. МТТ. 2024. № 4. С. 207–215. http://dx.doi.org/10.31857/S1026351924060114
  13. 13. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. Investigation of the effect of a viscous filler on the punching process of auxetic and non-auxetic metamaterials // Mech. Solids. 2024. V. 59. № 7. P. 3727–3734. https://doi.org/10.1134/S0025654424606633
  14. 14. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Исследование влияния вязкого заполнителя на механические свойства метаматериалов с отрицательным и положительным коэффициентом Пуассона при пробивании жестким ударником // Вестник Чувашского государственного педагогического университета им. И.Я. Яковлева. Серия: Механика предельного состояния. 2024. № 4 (62). С. 62–75. https://doi.org/10.37972/chgpu.2024.62.4.005 EDN: SFQXCI
  15. 15. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Влияние температуры метаматериалов на основе гибкого пластика TPU 95A на сопротивление пробиванию жестким ударником // Изв. РАН. МТТ. 2025. № 1. С. 197–208. http://dx.doi.org/10.31857/S1026351925010108
  16. 16. Gao Y., Huang H. Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio // Mech. Solids. 2022. V. 57. № 5. P. 1118–1133. https://doi.org/10.3103/S0025654422050053
  17. 17. Хing Y., Deng B., Cao M. et al. Influence of structural and morphological variations in orthogonal trapezoidal aluminum honeycomb on quasi-static mechanical properties // Mech. Solids. 2024. V. 59. № 1. P. 445–458. https://doi.org/10.1134/S0025654423602550
  18. 18. Скрипняк В.В., Чирков М.О., Скрипняк В.А. Моделирование механической реакции ауксетических метаматериалов на динамические воздействия // Вестник ПНИПУ. Механика. 2021. № 2. C. 144–152. https://doi.org/10.15593/perm.mech/2021.2.13
  19. 19. Imbalzano G., Tran P., Lee P.V.S. et. al. Influences of material and geometry in the performance of auxetic composite structure under blast loading // Appl. Mech. Mater. 2016. V. 846. P. 476–481. https://doi.org/10.4028/www.scientific.net/amm.846.476
  20. 20. Zhao X., Gao Q., Wang L. et. al. Dynamic crushing of double-arrowed auxetic structure un-der impact loading // Mater. Des. 2018. V. 160. P. 527–537. https://doi.org/10.1016/j.matdes.2018.09.041
  21. 21. Li C., Shen H.S., Wang H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core // Nonlinear Dyn. 2020. V. 100. P. 3235–3252. https://doi.org/10.1007/s11071-020-05686-4
  22. 22. Qiao J.X., Chen C.Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs // Inter. J. Impact Eng. 2015. V. 83. P. 47–58. https://doi.org/10.1016/j.ijimpeng.2015.04.005
  23. 23. Novak N., Starcevic L., Vesenjak M. et. al. Blast response study of the sandwich composite panels with 3D chiral auxetic core // Compos. Struct. 2019. V. 210. P. 167–178. https://doi.org/10.1016/j.compstruct.2018.11.050
  24. 24. Yu Y., Fu T., Wang S., Yang C. Dynamic response of novel sandwich structures with 3D sinusoid-parallel-hybrid honeycomb auxetic cores: The cores based on negative Poisson’s ratio of elastic jump // Eur. J. Mech. – A/Solids. 2025. V. 109. P. 105449. https://doi.org/10.1016/j.euromechsol.2024.105449
  25. 25. Shen Z.Y., Wen Y.K., Shen L.Y. et. al. Dynamic response and energy absorption characteristics of auxetic concave honeycomb pad for ballistic helmet under shock wave and bullet impact // Mech. Solids. 2024. V. 59. № 5. P. 3050–3067. http://doi.org/10.1134/S0025654424605159
  26. 26. Jiang Q., Hao B., Chen G. et. al. Analysis of the penetration ability of exponential bullets on TPMS structures with variable density // Mech. Solids. 2024. V. 59. № 5. P. 3198–3211. http://doi.org/10.1134/S0025654424605640
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library