RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Dynamics of the energy center of a long-wave low-amplitude disturbance in an anharmonic one-dimensional lattice

PII
S30346428S1026351925020111-1
DOI
10.7868/S3034642825020111
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
196-209
Abstract
The dynamics of a disturbance with finite energy in an infinite monatomic nonlinear one-dimensional lattice are analyzed. Based on the energy dynamics approach proposed earlier, we focus on such disturbance spatial characteristic as the position of its energy center. Restricting our analysis to long-wave low-amplitude disturbances, we investigate the dynamics of the α-FPU chain using its continuous version described by the KdV equation. We establish a connection of the Lagrangian and the energy of the original chain with the two conserving quantities of the KdV equation. Using these two quantities and the known properties of the KdV equation, we propose a method for determining the velocity of the energy center of the disturbance at large times based on the initial conditions.
Keywords
энергоперенос уравнение КдВ солитоны подход энергетической динамики
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
12

References

  1. 1. Achenbach J.D. Wave propagation in elastic solids. North Holland Series in Applied Mathematics and Mechanics. V. 16. Amsterdam: North-Holland Publishing Company; New York: American Elsevier, 1973. 425 p.
  2. 2. Whitham G.B. Linear and nonlinear waves. New Jersey: John Wiley and Sons, 1999. 660 p.
  3. 3. Mejia-Monasterio C., Politi A., Rondoni, L. Heat flux in one-dimensional systems // Phys. Rev. E 2019. V. 100. № 5. P. 032139.
  4. 4. Kaviany M. Heat transfer physics. 2nd ed. New York: Cambridge University Press, 2014. 765 p.
  5. 5. Babich V., Kiselev A. Elastic Waves: High Frequency Theory. 1st ed. New York: Chapman and Hall/CRC, 2018. 306 p.
  6. 6. Sheriff R.E., Geldart L.P. Exploration Seismology. 2nd ed. Cambridge: Cambridge University Press, 1995. 592 p.
  7. 7. Guo Y., Wang M. Phonon hydrodynamics and its applications in nanoscale heat transport // Phys. Rep. 2015. V. 595. P.1. https://doi.org/10.1016/J.PHYSREP.2015.07.003
  8. 8. Kuzkin V.A., Krivtsov A.M. Unsteady ballistic heat transport: linking lattice dynamics and kinetic theory // Acta Mechanica. 2021. V. 232. № 5. P. 1983. https://doi.org/10.1007/s00707-020-02927-w
  9. 9. Krivtsov A.M. Dynamics of matter and energy // ZAMM 2023. V. 103. № 4. P. e202100496. https://doi.org/10.1002/zamm.202100496
  10. 10. Baimova J.A., Bessonov N.M., Krivtsov A.M. Motion of localized disturbances in scalar harmonic lattices // Phys. Rev. E 2023. V. 107. № 6. P. 065002. https://doi.org/10.1103/PhysRevE.107.065002
  11. 11. Kuzkin V.A. Acoustic transparency of the chain-chain interface // Phys. Rev. E 2023. V. 107. № 6. P. 065004. https://doi.org/10.1103/PhysRevE.107.065004
  12. 12. Deen W.M. Analysis of Transport Phenomena. NewYork: Oxford University Press, 1998. 576 p.
  13. 13. Shcherbinin S.A., Krivtsov A.M. Energy dynamics of long-wave low-amplitude disturbances in an anharmonic one-dimensional lattice // Mechanics of Solids. 2024. V. 59. № 5. P. 3235–3243. https://doi.org/10.1134/S0025654424606001
  14. 14. Boussinesq J. Essai sur la theorie des eaux courantes // Memoires presentes par divers savants a l’Academie des Sciences de l’Institut National de France. 1877. V. 23. P. 1–680.
  15. 15. Miles J.W. The Korteweg-de Vries equation: a historical essay // J. Fluid Mech. 1981. V. 106. P. 131. https://doi.org/10.1017/S0022112081001559
  16. 16. Darrigo O. Joseph Boussinesq’s Legacy in fluid mechanics // Comptes Rendus Mécanique. 2017. V. 345. № 7. P. 427–445. https://doi.org/10.1016/j.crme.2017.05.008
  17. 17. Korteweg D.J., de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves // The London, Edinburgh, and Dublin Philosophical Magazine J. Science. 1895. V. 39. № 240. P. 422. https://doi.org/10.1080/14786449508620739
  18. 18. Miura R.M., Gardner C.S., Kruskal M.D. Korteweg‐de Vries equation and generalizations. II. Existence of conservation laws and constants of motion // J. Math. Phys. 1968. V. 9. № 8. P. 1204–1209. https://doi.org/10.1063/1.1664701
  19. 19. Schneider G., Wayne C.E. Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi–Pasta–Ulam model // International Conference on Differential Equations, V. 1, 2 (Berlin, 1999) 2000. P. 390. https://doi.org/10.1142/9789812792617_0075
  20. 20. Hong Y., Kwak C., Yang C. On the Korteweg–de Vries Limit for the Fermi–Pasta–Ulam System // Arch. Ration. Mech. Anal. 2021. V. 240. P. 1091–1145. https://doi.org/10.1007/s00205-021-01629-4
  21. 21. Карпман В.И. Нелинейные волны в диспергирующих средах. М.: Наука, 1973. 176 с.
  22. 22. Бахолдин И.Б. Бездиссипативные разрывы в механике сплошной среды. M.: Физматлит, 2004. 320 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library