RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Evolution of the single-wall carbon nanotubes bundle structure under compressive deformation

PII
S30346428S1026351925020071-1
DOI
10.7868/S3034642825020071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
119-136
Abstract
The change in the structure and properties of a carbon nanotube (CNT) bundle under the action of uniaxial compression deformation in the framework of a quasi-three-dimensional computer experiment is investigated. The equilibrium configurations of the CNT bundle cross section are considered and their energetic properties are analyzed. It is found that up to a compression strain of 12% the bundle deformation develops almost homogeneously, while at higher strains a number of structural rearrangements begin in the bundle and regions with different degrees of ellipticity of CNT cross sections are formed. When the compression strain reaches 24%, even more significant structural changes are observed, including the formation of collapsed CNTs. The presented results reveal the mechanisms of absorption of external impact energy by the CNT bundle, which is important for the development of materials damping shock and vibration loads.
Keywords
углеродные нанотрубки деформация сжатия компьютерное моделирование
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
15

References

  1. 1. Galiakhmetova L.Kh., Bachurin D.V., Korznikova E.A., Bayazitov A.M., Kudreyko A.A., Dmitriev S.V. Shock loading of carbon nanotube bundle // Mech. Mater. 2022. V. 174. 104460. https://doi.org/10.1016/j.mechmat.2022.104460
  2. 2. Dongju L. et al. Ultrahigh strength, modulus, and conductivity of graphitic fibers by macromolecular coalescence // Sci. Adv. 2022. V. 8. № 16. https://doi.org/10.1126/sciadv.abn0939
  3. 3. Zhan H., Lin J.H., Shi H.L., Wang J.N. Construction of carbon nanotubes/bismaleimide composite films with superior tensile strength and toughness // Compos. Sci. Technol. 2021. V. 214. P. 108975. https://doi.org/10.1016/j.compscitech.2021.108975
  4. 4. Hennequin T., Manghi M., Noury A., Henn F., Jourdain V., Palmeri J. Influence of the quantum capacitance on electrolyte conductivity through carbon nanotubes // J. Phys. Chem. Lett. 2024. V. 15. № 8. P. 2177–2183. https://doi.org/10.1021/acs.jpclett.3c03248
  5. 5. Wiśniewska M., Laptev A., Marczewski M. et al. Influence of carbon nanotubes on thermal and electrical conductivity of zirconia-based composite // Ceram. Int. 2023. V. 49. № 10. P. 15442–15450. https://doi.org/10.1016/j.ceramint.2023.01.129
  6. 6. Oluwalowo A., Nguyen N., Zhang S., Park J.G., Liang R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites // Carbon. 2019. V. 146. P. 224–231. https://doi.org/10.1016/j.carbon.2019.01.073
  7. 7. Jia Q., Zhou Y. et al. Differential multi-probe thermal transport measurements of multi-walled carbon nanotubes grown by chemical vapor deposition // Int. J. Heat Mass Transfer. 2023. V. 216. P. 124535. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124535
  8. 8. Jie W., Duan X., Gong L., Nie S. Interfacial and filler size effects on mechanical/thermal/electrical properties of CNTs-reinforced nanocomposites // Polymers. 2024. V. 16. № 6. P. 808. https://doi.org/10.3390/polym16060808
  9. 9. Wang X., Wang D., Ma S. et al. Enhanced toughness of boron carbide by single-wall carbon nanotube bundles // Mater. Today Commun. 2023. V. 35. P. 105651. https://doi.org/10.1016/j.mtcomm.2023.105651
  10. 10. Ushakov I.V., Safronov I.S. Directed changing properties of amorphous and nanostructured metal alloys with help of nanosecond laser impulses // CIS Iron and Steel Review. 2021. № 2. P. 77–81. https://doi.org/10.17580/cisisr.2021.02.14
  11. 11. Ushakov I.V., Safronov I.S., Oshorov A.D., Zhiqiang W., Muromtsev D.Y. Physics of the effect of high-temperature pulse heating on defects in the surface layer of a metal alloy // Metallurgist. 2023. V. 67. P. 986–994. https://doi.org/10.1007/s11015-023-01588-z
  12. 12. Moumen A., Tarfaoui M., Nachtane M., Lafdi K. Carbon nanotubes as a player to improve mechanical shock wave absorption // Compos. B Eng. 2019. V. 164. P. 67–71. https://doi.org/10.1016/j.compositesb.2018.11.072
  13. 13. Qiao J., Ushakov I.V., Safronov I.S. et al. Physical mechanism of nanocrystalline composite deformation responsible for fracture plastic nature at cryogenic temperatures // Nanomaterials. 2024. V. 14. № 8. P. 723. https://doi.org/10.3390/nano14080723
  14. 14. Wang Z., Ushakov I.V., Safronov I.S., Zuo J. Physical mechanism of selective healing of nanopores in condensed matter under the influence of laser irradiation and plasma // Nanomaterials. 2024. V. 14. № 2. P. 139. https://doi.org/10.3390/nano14020139
  15. 15. Safronov I.S., Ushakov I.V. Targeted alternation in properties of solid amorphous-nanocrystalline material in exposing to nanosecond laser radiation // DDF. 2021. V. 410. P. 469–474. https://doi.org/10.4028/www.scientific.net/DDF.410.469
  16. 16. Tang J., Qin L.-C., Sasaki T., Yudasaka M., Matsushita A., Iijima S. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure // Phys. Rev. Lett. 2000. V. 85. P. 1887–1889. https://doi.org/10.1103/PhysRevLett.85.1887
  17. 17. Ilgamov M.A., Aitbaeva A.A., Pavlov I.S., Dmitriev S.V. Carbon nanotube under pulsed pressure // FU Mech. Eng. 2024. V. 22. № 2. P. 275–292. https://doi.org/10.22190/FUME230820049I
  18. 18. Karmakar S., Sharma S.M., Teredesai P.V., Muthu D.V.S., Govindaraj A., Sikka S.K., Sood A.K. Structural changes in single-walled carbon nanotubes under non-hydrostatic pressures: X-ray and Raman studies // New J. Phys. 2003. V. 5. P. 143. https://doi.org/10.1088/1367-2630/5/1/143
  19. 19. Ivanova S.Yu., Osipenko K.Yu., Demin A.I., Banichuk N.V., Lisovenko D.S. Studying the properties of metamaterials with a negative Poisson’s ratio when punched by a rigid impactor // Mech. Solids. 2023. V. 58. P. 1536–1544. https://doi.org/10.3103/S0025654423600897
  20. 20. Ivanova S.Yu., Osipenko K.Yu., Kuznetsov V. A., Solovyov N.G., Banichuk N.V., Lisovenko D.S. Experimental investigation of the properties of auxetic and non-auxetic metamaterials made of metal during penetration of rigid strikers // Mech. Solids. 2023. V. 58. P. 524–528. https://doi.org/10.3103/S0025654422601616
  21. 21. Lisovenko D.S., Baimova J.A., Rysaeva L.K., Gorodtsov V.A., Rudskoy A.I., Dmitriev S.V. Equilibrium diamond-like carbon nanostructures with cubic anisotropy: Elastic properties // Phys. Status Solidi (B) Basic Res. 2016. V. 253. № 7. P. 1295–1302. https://doi.org/10.1002/pssb.201600049
  22. 22. Lee J.-H., Loya P., Lou J., Thomas E. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration // Science. 2014. V. 346. № 6213. P. 1092–1096. https://doi.org/10.1126/science.1258544
  23. 23. Lin Y., Liyong T. Suspended monolayer graphene traps high-speed single-walled carbon nanotube // Carbon. 2016. V. 107. P. 689–695. https://doi.org/10.1016/j.carbon.2016.06.041
  24. 24. Shepelev I.A., Chetverikov A.P., Dmitriev S.V., Korznikova E.A. Shock waves in graphene and boron nitride // Comput. Mater. Sci. 2020. V. 177. P. 109549. https://doi.org/10.1016/j.commatsci.2020.109549
  25. 25. Rysaeva L.K., Korznikova E.A., Murzaev R.T. et al. Elastic damper based on the carbon nanotube bundle // FU Mech. Eng. 2020. V. 18. № 1. P. 1–12. https://doi.org/10.22190/FUME200128011R
  26. 26. Korznikova E.A., Rysaeva L.K., Savin A.V., et al. Chain model for carbon nanotube bundle under plane strain conditions // Materials. 2019. V. 12. № 23. P. 3951. https://doi.org/10.3390/ma12233951
  27. 27. Savin A.V., Korznikova E.A., Dmitriev S.V. Scroll configurations of carbon nanoribbons // Phys. Rev. B. 2015. V. 92. P. 035412. https://doi.org/10.1103/PhysRevB.92.035412
  28. 28. Савин А.В., Савина О.И. Упругие и пластические деформации многослойных упаковок углеродных нанотрубок на плоской подложке // Журнал Экспериментальной и Теоретической Физики. 2022. Т. 161. № 1. С. 75–85. https://doi.org/10.31857/S0044451022010072
  29. 29. Rysaeva L.K., Bachurin D.V., Murzaev R.T., et al. Evolution of the carbon nanotube bundle structure under biaxial and shear strains // FU Mech. Eng. 2020. V. 18. № 4. P. 525–536. https://doi.org/10.22190/FUME201005043R
  30. 30. Савин А.В., Савина О.И. Динамика цепочек углеродных нанотрубок, расположенных на плоских подложках // Физика твердого тела. 2021. Вып. 1. С. 137. https://doi.org/10.21883/FTT.2021.01.50412.183
  31. 31. Савин А.В., Корзникова Е.А., Дмитриев С.В. Моделирование складчатых и рулонных упаковок углеродных нанолент // Физика твердого тела. 2015. Т. 57. № 11. С. 2278–2285.
  32. 32. Savin A.V., Korznikova E.A., Dmitriev S.V. Dynamics of surface graphene ripplocations on a flat graphite substrate // Phys. Rev. B. 2019. V. 99. P. 235411. https://doi.org/10.1103/PhysRevB.99.235411
  33. 33. Dmitriev S.V., Morkina A.Y., Tarov D.V. et al. Effect of repetitive high-density current pulses on plastic deformation of copper wires under stepwise loading // Spec. Mech. Eng. Oper. Res. 2024. V. 1. № 1. P. 27–43. https://doi.org/10.31181/smeor1120243
  34. 34. Liew K.M., Wong C.H., He X.Q., Tan M.J., Meguid S.A. Nanomechanics of single and multiwalled carbon nanotubes // Phys. Rev. B. 2004. V. 69. № 11. P. 115429. https://doi.org/10.1103/PhysRevB.69.115429
  35. 35. Safaei B., Naseradinmousavi P., Rahmani A. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression // J. Mol. Graph. Model. 2016. V. 65. P. 43–60. https://doi.org/10.1016/j.jmgm.2016.02.001
  36. 36. Chang W., Liu F., Liu Y. et al. Smallest carbon nanowires made easy: Long linear carbon chains confined inside single-walled carbon nanotubes // Carbon. 2021. V. 183. P. 571–577. https://doi.org/10.1016/j.carbon.2021.07.037
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library