RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Temperature influence of metamaterials based on flexible TPU 95A plastic on resistance to penetration by a rigid striker

PII
S30346428S1026351925010108-1
DOI
10.7868/S3034642825010108
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
197-208
Abstract
The mechanical properties of metamaterials with a cellular chiral internal structure were experimentally studied during normal penetration by a rigid spherical striker. The metamaterial samples were 3D printed from TPU 95A plastic (thermoplastic polyurethane). They had auxetic and non-auxetic chiral structures of cells in the form of concave and convex hexagons, respectively. The results of the experiments on sample penetration, conducted for two temperature and two speed modes, are presented. The relative loss of kinetic energy of the striker during penetration of auxetic samples was significantly higher than that of non-auxetic ones. It was found that for the studied types of flexible metamaterials, the resistance to striker penetration increases with increasing temperature in the considered temperature range. The dependence of the striker deviation on exit from the flexible sample on the type of chirality of the structure being penetrated was established.
Keywords
метаматериалы ауксетики экспериментальные исследования проникание пробивание жесткие ударники температура
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
21

References

  1. 1. Lim T.-C. Auxetic Materials and Structures. Singapore: Springer, 2015. http://dx.doi.org/10.1007/978-981-287-275-3
  2. 2. Kolken H.M.A., Zadpoor A.A. Auxetic Mechanical Metamaterials // RSC Adv. 2017. V. 7. № 9. P. 5111–5129. http://doi.org/10.1039/C6RA27333E
  3. 3. Ren X., Das R., Tran P. et al. Auxetic Metamaterials and Structures: A Review // Smart Mater. Struct. 2018. V. 27. № 2. P. 023001. https://doi.org/10.1088/1361-665X/aaa61c
  4. 4. Wu W., Hu W., Qian G., et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review // Mater. Des. 2019. V. 180. P. 107950. https://doi.org/10.1016/j.matdes.2019.107950
  5. 5. Городцов В.А., Лисовенко Д.С. Ауксетики среди материалов с кубической анизотропией // Изв. РАН. МТТ. 2020. № 4. С. 7–24. https://doi.org/10.31857/S0572329920040054
  6. 6. Шитикова М.В. Обзор вязкоупругих моделей с операторами дробного порядка, используемых в динамических задачах механики твердого тела // Изв. РАН. МТТ. 2022. № 1. С. 3–40. http://dx.doi.org/10.31857/S0572329921060118
  7. 7. Novak N., Vesenjak M., Ren Z. Auxetic cellular materials-a review // Strojniški vestnik – Journal of Mechanical Engineering. 2016. V. 62. № 9. P. 485–493. https://doi.org/10.5545/sv-jme.2016.3656
  8. 8. Kelkar P.U., Kim H.S., Cho K.-H. et. al. Cellular Auxetic Structures for Mechanical Metamaterials: A Review // Sensors. 2020. V. 20. № 11. P. 3132. https://doi.org/10.3390/s20113132
  9. 9. Joseph A., Manesh V., Harursampath D. On the application of additive manufacturing methods for auxetic structures: A review // Adv. Manuf. 2021. V. 9. № 3. P. 342–368. https://doi.org/10.1007/s40436-021-00357-y
  10. 10. Иванова С.Ю., Осипенко К.Ю., Кузнецов В.А., Соловьев Н.Г., Баничук Н.В., Лисовенко Д.С. Экспериментальное исследование свойств ауксетических и неауксетических метаматериалов из металла при проникании в них жестких ударников // Изв. РАН. МТТ. 2023. № 2. С. 176–180. https://doi.org/10.31857/S0572329922600773
  11. 11. Иванова С.Ю., Осипенко К.Ю., Демин А.И., Баничук Н.В., Лисовенко Д.С. Изучение свойств метаматериалов с отрицательным коэффициентом Пуассона при пробивании жестким ударником // Изв. РАН. МТТ. 2023. № 5. С. 120–130. https://doi.org/10.31857/S0572329923600366
  12. 12. Иванова С.Ю., Осипенко К.Ю., Баничук Н.В., Лисовенко Д.С. Экспериментальное исследование свойств метаматериалов на основе PLA пластика при пробивании жестким ударником // Изв. РАН. МТТ. 2024. № 4. С. 207–215.
  13. 13. Ivanova S.Yu., Osipenko K.Yu., Banichuk N.V., Lisovenko D.S. // Mech. Solids. 2024. V. 59. № 7. https://doi.org/10.1134/S0025654424606633
  14. 14. Gao Y., Huang H. Energy absorption and gradient of hybrid honeycomb structure with negative Poisson’s ratio // Mech. Solids. 2022. V. 57. № 5. P. 1118–1133. http://doi.org/10.3103/S0025654422050053
  15. 15. Хing Y., Deng B., Cao M. et al. Influence of structural and morphological variations in orthogonal trapezoidal aluminum honeycomb on quasi-static mechanical properties // Mech. Solids. 2024. V. 59. № 1. P. 445–458. https://doi.org/10.1134/S0025654423602550
  16. 16. Скрипняк В.В., Чирков М.О., Скрипняк В.А. Моделирование механической реакции ауксетических метаматериалов на динамические воздействия // Вестник ПНИПУ. Механика. 2021. № 2. C. 144–152. http://doi.org/10.15593/perm.mech/2021.2.13
  17. 17. Imbalzano G., Tran P., Lee P.V.S. et. al. Influences of material and geometry in the performance of auxetic composite structure under blast loading // Appl. Mech. Mater. 2016. V. 846. P. 476–481. http://doi.org/10.4028/www.scientific.net/amm.846.476
  18. 18. Zhao X., Gao Q., Wang L. et. al. Dynamic crushing of double-arrowed auxetic structure un-der impact loading // Mater. Des. 2018. V. 160. P. 527–537. http://doi.org/10.1016/j.matdes.2018.09.041
  19. 19. Li C., Shen H.S., Wang H. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core // Nonlinear Dyn. 2020. V. 100. P. 3235–3252. http://doi.org/10.1007/s11071-020-05686-4
  20. 20. Qiao J.X., Chen C.Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs // Inter. J. Impact Eng. 2015. V. 83. P. 47–58. http://doi.org/10.1016/j.ijimpeng.2015.04.005
  21. 21. Novak N., Starcevic L., Vesenjak M. et. al. Blast response study of the sandwich composite panels with 3D chiral auxetic core // Compos. Struct. 2019. V. 210. P. 167–178. https://doi.org/10.1016/j.compstruct.2018.11.050
  22. 22. Yu Y., Fu T., Wang S., Yang C. Dynamic response of novel sandwich structures with 3D sinusoid-parallel-hybrid honeycomb auxetic cores: The cores based on negative Poisson’s ratio of elastic jump // Eur. J. Mech. – A/Solids. 2025. V. 109. P. 105449. https://doi.org/10.1016/j.euromechsol.2024.105449
  23. 23. Shen Z.Y., Wen Y.K., Shen L.Y. et. al. Dynamic response and energy absorption characteristics of auxetic concave honeycomb pad for ballistic helmet under shock wave and bullet impact // Mech. Solids. 2024. V. 59. № 5. P. 3050–3067. https://doi.org/10.1134/S0025654424605159
  24. 24. Jiang Q., Hao B., Chen G. et. al. Analysis of the penetration ability of exponential bullets on TPMS structures with variable density // Mech. Solids. 2024. V. 59. № 5. P. 3198–3211. https://doi.org/10.1134/S0025654424605640
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library