RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

BIOMECHANICAL MODELING OF OSTEOTOMIES OF THE FIRST METATARSAL BONE IN NORMAL AND OSTEOPOROTIC CONDITIONS

PII
S30346428S1026351925050063-1
DOI
10.7868/S3034642825050063
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
109-123
Abstract
Hallux valgus is a widespread pathology. Osteotomy of the first metatarsal bone is the gold standard for its treatment. The success of this surgical intervention depends, among other factors, on the stability of the “bone-fixation” system. Previous studies assessing the biomechanical properties of various first metatarsal osteotomies have examined the influence of osteotomy type, degree of fragment displacement, as well as the number and positioning of screws. In these studies, the biomechanical properties of bone tissue corresponded to normal values of conventionally healthy patients. Older patients are characterized by a high prevalence of osteoporosis. This disease manifests in reduced mineral density and mechanical properties of bone. The effect of osteoporosis on the biomechanical parameters of first metatarsal osteotomy models has not been previously studied. The aim of this work was to evaluate the stability of first metatarsal osteotomies under normal bone density and osteoporotic conditions, as well as to assess the robustness of biomechanical models of the most common osteotomy types to minor variations in screw positioning and bone-cutting plane geometry. For this purpose, 36 biomechanical models of scarf and chevron osteotomies were created, varying screw placement, bone-cutting plane geometry, cortical thickness, and elastic modulus. Finite element analysis was used to assess the stress-strain state of the osteotomy models. Model validation was performed based on natural cantilever bending tests of first metatarsal osteotomies in universal testing machine. The study demonstrated the robustness of scarf and chevron osteotomy models to minor changes in geometric parameters. Chevron osteotomy proved more stable than scarf. Additionally, scarf osteotomy generated significantly higher bone stresses compared to chevron. It was found that even under osteoporotic conditions, both osteotomy types can provide sufficient stability and strength in terms of screw breakage and bone tissue damage.
Keywords
Hallux valgus остеотомия биомеханическая модель остеопороз
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
16

References

  1. 1. Favre P., Farine M., Snedeker J.G., Maquieira G.J., Espinosa N. Biomechanical consequences of first metatarsal osteotomy in treating hallux valgus // Clinical Biomechanics. 2010. V. 19. № 7. Р. 721–727. https://doi.org/10.1016/j.clinbiomech.2010.05.002
  2. 2. Полиенко А.В., Иванов Д.В., Киреев С.И., Бессонов Л.В., Мулдашева А.М., Оленко Е.С. Численный анализ напряженно-деформированного состояния остеотомий первой плюсневой кости // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2023. Т. 23. № 4. С. 496–511. https://doi.org/10.18500/1816-9791-2023-23-4-496-511
  3. 3. Голджина А.А., Полиенко А.В., Киреев С.И., Куринова А.Г., Киреев В.С. Анализ биомеханических параметров остеотомии первой плюсневой кости // Российский журнал биомеханики. 2019. Т. 23. № 3. С. 400–410. https://doi.org/10.15593/RZhBiomeh/2019.3.06
  4. 4. Li Y., Wang Y., Tang K., Tao X. Modified scarf osteotomy for hallux valgus: From a finite element model to clinical results // J. Orthop. Surg. 2022. V. 30. № 3. 10225536221143816. https://doi.org/10.1177/10225536221143816
  5. 5. Shih K.S., Hsu C.C., Huang G.T. Biomechanical investigation of hallux valgus deformity treated with different osteotomy methods and Kirschner wire fixation strategies using the finite element method // Bioengineering (Basel). 2023. V. 10. № 4. Р. 499. https://doi.org/10.3390/bioengineering10040499
  6. 6. Xie Q., Li X., Wang P. Three-dimensional finite element analysis of biomechanics of osteotomy ends with three different fixation methods after hallux valgus minimally invasive osteotomy // J. Orthop. Surg. 2023. V. 31. № 2. 10225536231175235. https://doi.org/10.1177/10225536231175235
  7. 7. Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical Comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. Р. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
  8. 8. Esses S.I., McGuire R., Jenkins J., Finkelstein J., Woodard E., Watters W.C. III et al. The treatment of symptomatic osteoporotic spinal compression fractures // Am. Acad. Orthop. Surg. 2011. V. 19. № 3. Р. 176–182. https://doi.org/10.2106/JBJS.9320ebo
  9. 9. Kang S., Park C.H., Jung H., Lee S., Min Y.S., Kim C.H. et al. Analysis of the physiological load on lumbar vertebrae in patients with osteoporosis: a finite-element study // Sci Rep. 2022. V. 12. № 1. Р. 11001. https://doi.org/10.1038/s41598-022-15241-3
  10. 10. Seeman E. Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis // Osteoporos Int. 2003. V. 14. Р. 2–8. https://doi.org/10.1007/s00198-002-1340-9
  11. 11. Zhang Y., Awrejewicz J., Szymanowska O., Shen S., Zhao X., Baker J.S., Gu Y. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis // Comput. Biol. Med. 2018. V. 97. Р. 1–7. https://doi.org/10.1016/j.compbiomed.2018.04.010
  12. 12. Иванов Д.В., Доль А.В., Бессонов Л.В., Киреев С.И., Гуляева А.О. Методика механических испытаний при консольном нагружении плюсневых костей стопы // Российский журнал биомеханики. 2023. Т. 27. № 4. С. 84–92. https://doi.org/10.15593/RZhBiomeh/2023.4.06
  13. 13. Deenik A.R., Pilot P., Brandt S.E., van Mameren H., Geesink R.G., Draijer W.F. Scarf versus chevron osteotomy in hallux valgus: a randomized controlled trial in 96 patients // Foot Ankle Int. 2007. V. 28. № 5. Р. 537–541. https://doi.org/10.3113/FAI.2007.0537
  14. 14. Ma Q., Liang X., Lu J. Chevron osteotomy versus scarf osteotomy for hallux valgus correction: A meta-analysis // Foot Ankle Surg. 2019. V. 25. № 6. Р. 755–760. https://doi.org/10.1016/j.fas.2018.09.003
  15. 15. Sun X., Guo Z., Cao X., Xiong B., Pan Y., Sun W., Bai Z. Stability of osteotomy in minimally invasive hallux valgus surgery with “8” shaped bandage during gait: a finite element analysis // Front. Bioeng. Biotechnol. 2024. V. 12. Р. 1415617. https://doi.org/10.3389/fbioe.2024.1415617
  16. 16. Kim J.S., Cho H.K., Young K.W., Kim J.S., Lee K.T. Biomechanical comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus // Clin. Orthop. Surg. 2017. V. 9. № 4. Р. 514–520. https://doi.org/10.4055/cios.2017.9.4.514
  17. 17. Havaldar R., Pilli S.C., Putti B.B. Insights into the effects of tensile and compressive loadings on human femur bone // Adv. Biomed. Res. 2014. V. 3. № 1. Р. 101. https://doi.org/10.4103/2277-9175.129375
  18. 18. Иванов Д.В. Биомеханическая поддержка решения врача при выбора варианта лечения на основе количественных критериев оценки успешности // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22. № 1. С. 62–89. https://doi.org/10.18500/1816-9791-2022-22-1-62-89
  19. 19. Гуляева А.О., Фалькович А.С., Киреев С.И., Терин Д.В., Магомедов И.М. Исследование связи между подошвенным давление и тонусом икроножной мышцы. Разработка и апробация нового экспериментального стенда // Российский журнал биомеханики. 2023. Т. 27. № 4. С. 127–137. https://doi.org/10.15593/RZhBiomeh/2023.4.10
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library