- PII
- S30346428S1026351925050016-1
- DOI
- 10.7868/S3034642825050016
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 5
- Pages
- 3-27
- Abstract
- An review of the temperature dependences of the elasticity characteristics of cubic crystals of simple substances is given. It is shown that the general trend is a decrease in elastic modulus , и with temperature due to the weakening of interatomic bonds due to thermal expansion of the crystal lattice. However, there are also anomalous dependencies, such as an increase in the shear modulus with temperature, observed for BCC crystals of vanadium V, niobium Nb, tantalum Ta and FCC crystals of palladium Pd, platinum Pt. A common feature for the cubic crystals considered, except for BCC chromium Cr, is an increase in Poisson’s ratio v with temperature. The coefficient of elastic anisotropy also shows a general upward trend, but for some crystals, BCC V, Nb, Ta and FCC Al, local minima are observed, and for BCC Cr and FCC Pd, maxima are observed.
- Keywords
- кубические кристаллы простые вещества температурные зависимости упругих свойств
- Date of publication
- 20.01.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 17
References
- 1. Berliner R., Fajen O., Smith H.G., Hitterman R.L. Neutron powder-diffraction studies of lithium, sodium, and potassium metal // Phys. Rev. B. 1989. V. 40. № 18. P. 12086–12097. https://doi.org/10.1103/PhysRevB.40.12086
- 2. Barrett C.S. X-ray study of the alkali metals at low temperatures // Acta Cryst. 1956. V. 9. № 8. P. 671–677. https://doi.org/10.1107/S0365110X56001790
- 3. Ernst G., Artner C., Blaschko O., Krexner G. Low-temperature martensitic phase transition of bcc lithium // Phys. Rev. B. 1986. V. 33. № 9. P. 6465–6469. https://doi.org/10.1103/PhysRevB.33.6465
- 4. Pichl W., Krystian M. Martensitic transformation and mechanical deformation of high- purity lithium // Mater. Sci. UNK. A. 1999. V. 273–275. P. 208–212. https://doi.org/10.1016/S0921-5093 (99)00372-X
- 5. Nash H.C., Smith C.S. Single-crystal elastic constants of lithium // J. Phys. Chem. Solids. 1959. V. 9. № 2. P. 113–118. https://doi.org/10.1016/0022-3697 (59)90201-X
- 6. Slotwinski T., Trivisonno J. Temperature dependence of the elastic constants of single crystal lithium // J. Phys. Chem. Solids. 1969. V. 30. № 5. P. 1276–1278. https://doi.org/10.1016/0022-3697 (69)90386-2
- 7. Marquardt W.R., Trivisonno J. Low temperature elastic constants of potassium // J. Phys. Chem. Solids. 1965. V. 26. № 2. P. 273–278. https://doi.org/10.1016/0022-3697 (65)90155-1
- 8. Fritsch G., Bube H. The elastic constants of potassium in the temperature region from 20 up to 63°C // Phys. Status Solidi A. 1975. V. 30. № 2. P. 571–576. https://doi.org/10.1002/pssa.2210300217
- 9. Gutman E.J., Trivisonno J. Temperature dependence of the elastic constants of rubidium // J. Phys. Chem. Solids. 1967. V. 28. № 5. P. 805–809. https://doi.org/10.1016/0022-3697 (67)90009-1
- 10. Kollarits F.J., Trivisonno J. Single-crystal elastic constants of cesium // J. Phys. Chem. Solids. 1968. V. 29. № 12. P. 2133–2139. https://doi.org/10.1016/0022-3697 (68)90009-7
- 11. Daniels W.B. Pressure variation of the elastic constants of sodium // Phys. Rev. 1960. V. 119. № 4. P. 1246–1252. https://doi.org/10.1103/PhysRev.119.1246
- 12. Diederich M.E., Trivisonno J. Temperature dependence of the elastic constants of sodium // J. Phys. Chem. Solids. 1966. V. 27. № 4. P. 637–642. https://doi.org/10.1016/0022-3697 (66)90214-9
- 13. Martinson R. H. Variation of the elastic constants of sodium with temperature and pressure // Phys. Rev. 1969. V. 178. № 3. P. 902–913. https://doi.org/10.1103/PhysRev.178.902
- 14. Fritsch G., Geipel F., Prasetyo A. The elastic constants of sodium from 20 to 95°C // J. Phys. Chem. Solids. 1973. V. 34. № 11. P. 1961–1969. https://doi.org/10.1016/S0022-3697 (73)80118-0
- 15. Ho P.S., Ruoff A.L. Analysis of ultrasonic data and experimental equation of state for sodium // J. Phys. Chem. Solids. 1968. V. 29. № 12. P. 2101–2111. https://doi.org/10.1016/0022-3697 (68)90005-X
- 16. Епишин А.И., Лисовенко Д.С. Анализ упругих свойств кубических кристаллов простых веществ с использованием диаграммы A–v // известия. РАН. МТТ. 2025. № 4. С. 249–258. https://doi.org/10.31857/S1026351925040047
- 17. Bolef D.I., Smith R.E., Miller J.G. Elastic properties of vanadium. I. Temperature dependence of the elastic constants and the thermal expansion // Phys. Rev. B. 1971. V. 3. № 12. P. 4100–4108. https://doi.org/10.1103/PhysRevB.3.4100
- 18. Walker E. Anomalous temperature behaviour of the shear elastic constant C44 in vanadium // Solid State Commun. 1978. V. 28. № 7. P. 587–589. https://doi.org/10.1016/0038-1098 (78)90495-7
- 19. Talmor K.Y., Walker E., Steinemann S. Elastic constants of niobium up to the melting point // Solid State Commun. 1977. V. 23. № 9. P. 649–651. https://doi.org/10.1016/0038-1098 (77)90541-5
- 20. Armstrong P.E., Dickinson J.M., Brown H.L. Temperature dependence of the elastic coefficients of niobium (columbium) // Trans. Metal. Soc. AIME. 1966. V. 236. P. 1404–1408.
- 21. Featherston F.H., Neighbours J.R. Elastic constants of tantalum, tungsten, and molybdenum // Phys. Rev. 1963. V. 130. № 4. P. 1324–1333. https://doi.org/10.1103/PhysRev.130.1324
- 22. Walker E., Bujard P. Anomalous temperature behaviour of the shear elastic constant C44 in tantalum // Solid State Commun. 1980. V. 34. № 8. P. 691–693. https://doi.org/10.1016/0038-1098 (80)90957-6
- 23. Bolef D.I., De Klerk J. Elastic constants of single crystal Mo and W between 77 and 500 k // J. Appl. Phys. 1962. V. 33. № 7. P. 2311–2314. https://doi.org/10.1063/1.1728952
- 24. Bolef D.I., de Klerk J. Anomalies in the elastic constants and thermal expansion of chromium single crystals // Phys. Rev. 1963. V. 129. № 3. P. 1063–1067. https://doi.org/10.1103/PhysRev.129.1063
- 25. Palmer S.B., Lee E.W. The elastic constants of chromium // Phil. Mag. 1971. V. 24. № 188. P. 311–318. https://doi.org/10.1080/14786437108227390
- 26. Васильев А.Н., Савченко Ю.И., Георгиус Р.Ш., Фосетт Е. влияние магнитного поля на упругие свойства антиферромагнитного хрома // вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 1993. Т. 34. № 2. С. 42–45. http://vmu.phys.msu.ru/toc/1993/2
- 27. Steinitz M.O., Schwartz L.H., Marcus J.A., Fawcett E., Reed W. Lattice anisotropy in antiferromagnetic chromium // Phys. Rev. Lett. 1969. V. 23. № 17. P. 979–982. https://doi.org/10.1103/PhysRevLett.23.979
- 28. Alers G.A., Neighbours J.R., Sato H. Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy // J. Phys. Chem. Solids. 1960. V. 13. № 1–2. P. 40–55. https://doi.org/10.1016/0022-3697 (60)90125-6
- 29. Renaud Ph., Steinemann S.G. High temperature elastic constants of fcc Fe-Ni invar alloys // Physica B: Condensed Matter. 1990. V. 16. № 1–3. P. 75–78. https://doi.org/10.1016/0921-4526 (89)90107-5
- 30. Rayne J.A., Chandrasekhar B.S. Elastic constants of iron from 4.2 to 300°k // Phys. Rev. 1961. V. 122. № 6. P. 1714–1716. https://doi.org/10.1103/PhysRev.122.1714
- 31. Dever D.J. Temperature dependence of the elastic constants in α-iron single crystals: relationship to spin order and diffusion anomalies // J. Appl. Phys. 1972. V. 43. № 8. P. 3293–3301. https://doi.org/10.1063/1.1661710
- 32. Overton W.C., Gaffney J. Temperature variation of the elastic constants of cubic elements. I. Copper // Phys. Rev. 1955. V. 98. № 4. P. 969–977. https://doi.org/10.1103/PhysRev.98.969
- 33. Chang Y.A., Himmel L. Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature // J. Appl. Phys. 1966. Vol. 37. № 9. P. 3567–3572. https://doi.org/10.1063/1.1708903
- 34. Neighbours J.R., Alers G.A. Elastic constants of silver and gold // Phys. Rev. 1958. V. 111. № 3. P. 707–712. https://doi.org/10.1103/PhysRev.111.707
- 35. Collard S.M., McLellan R.B. High-temperature elastic constants of gold single-crystals // Acta Metall. Mater. 1991. V. 39. № 12. P. 3143–3151. https://doi.org/10.1016/0956-7151 (91)90048-6
- 36. MacFarlane R.E., Rayne J.A., Jones C.K. Anomalous temperature dependence of shear modulus c44 for platinum // Phys. Lett. 1965. V. 18. № 2. P. 91–92. https://doi.org/10.1016/0031-9163 (65)90659-1
- 37. Collard S.M., McLellan R.B. High-temperature elastic constants of platinum single crystals // Acta Metall. Mater. 1992. V. 40. № 4. P. 699–702. https://doi.org/10.1016/0956-7151 (92)90011-3
- 38. Rayne J.A. Elastic constants of palladium from 4.2-300°k // Phys. Rev. 1960. V. 118. № 6. P. 1545–1549. https://doi.org/10.1103/PhysRev.118.1545
- 39. Walker E., Ortelli J., Peter M. Elastic constants of monocrystalline alloys of Pd-Rh and Pd-Ag between 4.2°k and 300°k // Phys. Lett. A. 1970. V. 31. № 5. P. 240–241. https://doi.org/10.1016/0375-9601 (70)90949-7
- 40. Weinmann C., Steinemann S. Lattice and electronic contributions to the elastic constants of palladium // Solid State Commun. 1974. V. 15. № 2. P. 281–285. https://doi.org/10.1016/0038-1098 (74)90758-3
- 41. Yoshihara M., McLellan R.B., Brotzen F.R. The high-temperature elastic properties of palladium single crystals // Acta Metall. 1987. V. 35. № 3. P. 775–780. https://doi.org/10.1016/0001-6160 (87)90204-5
- 42. Kamm G.N., Alers G.A. Low-temperature elastic moduli of aluminum // J. Appl. Phys. 1964. V. 35. № 2. P. 327–330. https://doi.org/10.1063/1.1713309
- 43. Gerlich D., Fisher E.S. The high temperature elastic moduli of aluminum // J. Phys. Chem. Solids. 1969. V. 30. № 5. P. 1197–1205. https://doi.org/10.1016/0022-3697 (69)90377-1
- 44. Waldorf D.L., Alers G.A. Low-temperature elastic moduli of lead // J. Appl. Phys. 1962. V. 33. № 11. P. 3266–3269. https://doi.org/10.1063/1.1931149
- 45. Vold C.L., Glicksman M.E., Kammer E.W., Cardinal L.C. The elastic constants for single- crystal lead and indium from room temperature to the melting point // J. Phys. Chem. Solids. 1977. V. 38. № 2. P. 157–160. https://doi.org/10.1016/0022-3697 (77)90159-7
- 46. Armstrong P.E., Carlson O.N., Smith J.F. Elastic constants of thorium single crystals in the range 77–400°k // J. Appl. Phys. 1959. V. 30. № 1. P. 36–41. https://doi.org/10.1063/1.1734971
- 47. Zouboulis E.S., Grimsditch M., Ramdas A.K., Rodriguez S. Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study // Phys. Rev. B. 1998. V. 57. № 5. P. 2889–2896. https://doi.org/10.1103/PhysRevB.57.2889
- 48. Епишин А.И., Лисовенко Д.С. Экстремальные значения коэффициента Пуассона кубических кристаллов. // ЖТФ. 2016. Т. 86. № 10. С. 74–82. https://doi.org/10.1134/S1063784216100121
- 49. Епишин А.И., Лисовенко Д.С. влияние кристаллической структуры и типа межатомной связи на упругие свойства одноатомных и двухатомных кубических кристаллов // известия. РАН. МТТ. 2022. № 6. С. 79–96. https://doi.org/10.31857/S0572329922060058