- PII
- S30346428S1026351925040107-1
- DOI
- 10.7868/S3034642825040107
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 4
- Pages
- 188-201
- Abstract
- Using a mathematical model of large deformations of materials with elastic, plastic and viscous properties, an analytical solution is obtained for the problem of deformation under creep conditions of a viscoelastic material placed in a gap between two rigid cylindrical surfaces, when the outer rigid cylinder rotates due to a twisting moment applied to it, while the inner cylinder is stationary. The displacements, reversible and irreversible deformations, stresses at all stages of deformation, including residual deformations and stresses under full unloading, are calculated.
- Keywords
- большие деформации ползучесть упругость остаточные напряжения
- Date of publication
- 25.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 17
References
- 1. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
- 2. Finnie I., Heller W.R. Creep of engineering materials. New York: McGraw-Hill Book Co. Inc., 1959. 341 p.
- 3. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 400 с.
- 4. Локощенко А.М. Ползучесть и длительная прочность металлов. М.: Физматлит, 2016. 504 с.
- 5. Weir C.D. The creep of thick tube under internal pressure // J. Appl. Mech. 1957. V. 24. № 3. P. 464–466. https://doi.org/10.1115/1.4011565
- 6. Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of an internally pressurised orthotropic rotating cylinder // Nucl. Eng. Des. 1984. V. 83. № 3. P. 379–388. https://doi.org/10.1016/0029-5493 (84)90130-4
- 7. Sim R.G., Penny R.K. Plane strain creep behaviour of thick-walled cylinders // Int. J. Mech. Sci. 1971. V. 13. № 12. P. 987–1009. https://doi.org/10.1016/0020-7403 (71)90023-3
- 8. Bhatnagar N.S., Gupta S.K. Analysis of thick-walled orthotropic cylinder in the theory of creep // J. Phys. Soc. Japan. 1969. V. 27. № 6. P. 1655–1662. https://doi.org/10.1143/JPSJ.27.1655
- 9. Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of orthotropic rotating cylinders considering finite strains // Int. J. Non-Lin. Mech. 1986. V. 21. № 1. P. 61–71. https://doi.org/10.1016/0020-7462 (86)90013-2
- 10. Liu S.-A., Chen W.-P. On the creep rupture of a pressurized sphere // J. Chin. Soc. Mech. Eng. 1997. V. 18. № 5. P. 467–475.
- 11. Liu S.-A. Creep-fatigue rupture of a thick sphere subjected to pulsating internal pressure // J. Chin. Soc. Mech. Eng. 2004. V. 25. № 4. P. 363–372.
- 12. Miller G.K. Stresses in a spherical pressure vessel undergoing creep and dimensional changes // Int. J. Solids Struct. 1995. V. 32. № 14. P. 2077–2093.
- 13. Rimrott F.P.J., Luke J.R. Large strain creep of rotating cylinders // ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik. 1961. V. 41. № 12. P. 485–500. https://doi.org/10.1002/zamm.19610411203
- 14. Bhatnagar N.S., Arya V.K. Creep of thick-walled spherical vessels under internal pressure considering large strains // Indian J. Pure Appl. Math. 1975. № 6. P. 1080.
- 15. Sakaki T., Kuroki T., Sugimoto K. Creep of a hollow sphere // Journal of Applied Mechanics, Transactions ASME. 1990. V. 57. № 2. P. 276–281. https://doi.org/10.1115/1.2891985
- 16. Baniasadi M., Fareghi P., Darijani F., Baghani M. Finite strain relaxation and creep in coupled axial and torsional deformation // Mech. Based Des. Struc. Mach. 2020. V. 50. № 8. P. 2795–2811. https://doi.org/10.1080/15397734.2020.1785311
- 17. Hoseini Z., Nejad M., Niknejad A., Ghannad M. New exact solution for creep behavior of rotating thick-walled cylinders // J. Basic Appl. Sci. Res. 2011. V. 1. № 10. P. 1704–1708.
- 18. Nejad M., Hoseini Z., Niknejad A., Ghannad M. A new analytical solution for creep stresses in thick-walled spherical pressure vessels // J. Basic Appl. Sci. Res. 2011. V. 1. № 11. P. 2162–2166.
- 19. Hoseini Z., Nejad M., Niknejad A., Ghannad M. New exact solution for creep behavior of rotating thick-walled cylinders // J. Basic Appl. Sci. Res. 2011. V. 1. № 10. P. 1704–1708.
- 20. Kobelev V. Some Basic Solutions for Nonlinear Creep // Int. J. Solids Struct. 2014. V. 51. № 19–20. P. 3372–3381. https://doi.org/10.1016/j.ijsolstr.2014.05.029
- 21. Кузнецов Е.Б., Леонов С.С. Об аналитическом решении одной задачи ползучести // Журнал СВМО. 2018. Т. 20. № 3. С. 282–294. https://doi.org/10.15507/2079-6900.20.201803.282-294
- 22. Shutov A., Altenbach H., Naumenko K. Steady-state creep analysis of pressurized pipe weldments by perturbation method // Int. J. Solids Struct. 2006. V. 43. № 22–23. P. 6908–6920. https://doi.org/10.1016/j.ijsolstr.2006.02.013
- 23. Быковцев Г.И., Шитиков А.В. Конечные деформации упругопластических сред // Докл. АН СССР. 1990. Т. 311. № 1. С. 59–62.
- 24. Буренин А.А., Быковцев Г.И., Ковтанюк Л.В. Об одной простой модели для упруго-пластической среды при конечных деформациях // Докл. АН СССР. 1996. Т. 347. № 2. С. 199–201.
- 25. Буренин А.А., Ковтанюк Л.В. Большие необратимые деформации и упругое последействие. Владивосток: Дальнаука, 2013. 312 с.
- 26. Ковтанюк Л.В. Аналитическое решение задачи о ползучести вязкоупругого материала в круглой трубе // Доклады Российской академии наук. Физика, технические науки. 2023. Т. 513. № 1. С. 70–74. https://doi.org/10.31857/S2686740023060111
- 27. Norton F.H. The Creep of Steel at High Temperatures. New York: McGraw Hill Book Company, 1929. 90 p.