RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

On an analytical solution to the creep problem of a viscoelastic cylindrical layer under torsional loading

PII
S30346428S1026351925040107-1
DOI
10.7868/S3034642825040107
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
188-201
Abstract
Using a mathematical model of large deformations of materials with elastic, plastic and viscous properties, an analytical solution is obtained for the problem of deformation under creep conditions of a viscoelastic material placed in a gap between two rigid cylindrical surfaces, when the outer rigid cylinder rotates due to a twisting moment applied to it, while the inner cylinder is stationary. The displacements, reversible and irreversible deformations, stresses at all stages of deformation, including residual deformations and stresses under full unloading, are calculated.
Keywords
большие деформации ползучесть упругость остаточные напряжения
Date of publication
25.02.2025
Year of publication
2025
Number of purchasers
0
Views
17

References

  1. 1. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
  2. 2. Finnie I., Heller W.R. Creep of engineering materials. New York: McGraw-Hill Book Co. Inc., 1959. 341 p.
  3. 3. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 400 с.
  4. 4. Локощенко А.М. Ползучесть и длительная прочность металлов. М.: Физматлит, 2016. 504 с.
  5. 5. Weir C.D. The creep of thick tube under internal pressure // J. Appl. Mech. 1957. V. 24. № 3. P. 464–466. https://doi.org/10.1115/1.4011565
  6. 6. Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of an internally pressurised orthotropic rotating cylinder // Nucl. Eng. Des. 1984. V. 83. № 3. P. 379–388. https://doi.org/10.1016/0029-5493 (84)90130-4
  7. 7. Sim R.G., Penny R.K. Plane strain creep behaviour of thick-walled cylinders // Int. J. Mech. Sci. 1971. V. 13. № 12. P. 987–1009. https://doi.org/10.1016/0020-7403 (71)90023-3
  8. 8. Bhatnagar N.S., Gupta S.K. Analysis of thick-walled orthotropic cylinder in the theory of creep // J. Phys. Soc. Japan. 1969. V. 27. № 6. P. 1655–1662. https://doi.org/10.1143/JPSJ.27.1655
  9. 9. Bhatnagar N.S., Kulkarni P.S., Arya V.K. Creep analysis of orthotropic rotating cylinders considering finite strains // Int. J. Non-Lin. Mech. 1986. V. 21. № 1. P. 61–71. https://doi.org/10.1016/0020-7462 (86)90013-2
  10. 10. Liu S.-A., Chen W.-P. On the creep rupture of a pressurized sphere // J. Chin. Soc. Mech. Eng. 1997. V. 18. № 5. P. 467–475.
  11. 11. Liu S.-A. Creep-fatigue rupture of a thick sphere subjected to pulsating internal pressure // J. Chin. Soc. Mech. Eng. 2004. V. 25. № 4. P. 363–372.
  12. 12. Miller G.K. Stresses in a spherical pressure vessel undergoing creep and dimensional changes // Int. J. Solids Struct. 1995. V. 32. № 14. P. 2077–2093.
  13. 13. Rimrott F.P.J., Luke J.R. Large strain creep of rotating cylinders // ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik. 1961. V. 41. № 12. P. 485–500. https://doi.org/10.1002/zamm.19610411203
  14. 14. Bhatnagar N.S., Arya V.K. Creep of thick-walled spherical vessels under internal pressure considering large strains // Indian J. Pure Appl. Math. 1975. № 6. P. 1080.
  15. 15. Sakaki T., Kuroki T., Sugimoto K. Creep of a hollow sphere // Journal of Applied Mechanics, Transactions ASME. 1990. V. 57. № 2. P. 276–281. https://doi.org/10.1115/1.2891985
  16. 16. Baniasadi M., Fareghi P., Darijani F., Baghani M. Finite strain relaxation and creep in coupled axial and torsional deformation // Mech. Based Des. Struc. Mach. 2020. V. 50. № 8. P. 2795–2811. https://doi.org/10.1080/15397734.2020.1785311
  17. 17. Hoseini Z., Nejad M., Niknejad A., Ghannad M. New exact solution for creep behavior of rotating thick-walled cylinders // J. Basic Appl. Sci. Res. 2011. V. 1. № 10. P. 1704–1708.
  18. 18. Nejad M., Hoseini Z., Niknejad A., Ghannad M. A new analytical solution for creep stresses in thick-walled spherical pressure vessels // J. Basic Appl. Sci. Res. 2011. V. 1. № 11. P. 2162–2166.
  19. 19. Hoseini Z., Nejad M., Niknejad A., Ghannad M. New exact solution for creep behavior of rotating thick-walled cylinders // J. Basic Appl. Sci. Res. 2011. V. 1. № 10. P. 1704–1708.
  20. 20. Kobelev V. Some Basic Solutions for Nonlinear Creep // Int. J. Solids Struct. 2014. V. 51. № 19–20. P. 3372–3381. https://doi.org/10.1016/j.ijsolstr.2014.05.029
  21. 21. Кузнецов Е.Б., Леонов С.С. Об аналитическом решении одной задачи ползучести // Журнал СВМО. 2018. Т. 20. № 3. С. 282–294. https://doi.org/10.15507/2079-6900.20.201803.282-294
  22. 22. Shutov A., Altenbach H., Naumenko K. Steady-state creep analysis of pressurized pipe weldments by perturbation method // Int. J. Solids Struct. 2006. V. 43. № 22–23. P. 6908–6920. https://doi.org/10.1016/j.ijsolstr.2006.02.013
  23. 23. Быковцев Г.И., Шитиков А.В. Конечные деформации упругопластических сред // Докл. АН СССР. 1990. Т. 311. № 1. С. 59–62.
  24. 24. Буренин А.А., Быковцев Г.И., Ковтанюк Л.В. Об одной простой модели для упруго-пластической среды при конечных деформациях // Докл. АН СССР. 1996. Т. 347. № 2. С. 199–201.
  25. 25. Буренин А.А., Ковтанюк Л.В. Большие необратимые деформации и упругое последействие. Владивосток: Дальнаука, 2013. 312 с.
  26. 26. Ковтанюк Л.В. Аналитическое решение задачи о ползучести вязкоупругого материала в круглой трубе // Доклады Российской академии наук. Физика, технические науки. 2023. Т. 513. № 1. С. 70–74. https://doi.org/10.31857/S2686740023060111
  27. 27. Norton F.H. The Creep of Steel at High Temperatures. New York: McGraw Hill Book Company, 1929. 90 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library