- Код статьи
- S30346428S1026351925040051-1
- DOI
- 10.7868/S3034642825040051
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 4
- Страницы
- 80-114
- Аннотация
- Сормулирована задача на условный экстремум, позволяющая определять по второму предельному состоянию верхнюю границу допустимой угловой скорости вращения осесимметрично искривленного, армированного волокнами диска. Конструкция жестко закреплена на валу или ступице; к внешней кромке полотна диска могут быть прикреплены лопатки. Материалы компонентов композиции предполагаются жесткопластическими, имеющими асимметрию при растяжении и сжатии; материал связующей матрицы может обладать цилиндрической анизотропией. Пластическое деформирование компонентов композиции ассоциировано с кусочно-линейными критериями текучести. Структуры армирования полотна диска обладают меридиональной симметрией. Использована двуслойная модель искривленного диска с плосконапряженным состоянием в каждом из фиктивных композитных слоев. Дискретизированная поставленная задача решена симплекс-методом теории линейного программирования. Проведена верификация разработанного численного алгоритма. Проанализированы примеры численного расчета предельной угловой скорости вращения плоских, конических и сферических однородных и композитных дисков при разной степени их искривления. Исследованы случаи армирования полотна диска по геодезическим направлениям и по логарифмическим спиралям, а также по меридиональным и окружным траекториям. Сравнение проведено для дисков одинаковой массы при одинаковом расходе арматуры. Показано, что наибольшей несущей способностью обладают композитные диски с меридионально-окружной структурой армирования. Продемонстрировано, что даже незначительное осесимметричное искривление полотна диска приводит к резкому уменьшению его несущей способности по сравнению с аналогичной плоской конструкцией.
- Ключевые слова
- вращающиеся диски оболочки вращения армирование волокнами жесткопластическая модель предельное состояние оценка несущей способности сверху кусочно-линейные критерии текучести разносопротивляемость анизотропия численное решение симплекс-метод линейного программирования
- Дата публикации
- 30.12.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 14
Библиография
- 1. Пономарев С.Д., Бидерман В.Л., Лихарев К.К., Макушин В.М., Малинин Н.Н., Феодосьев В.И. Расчеты на прочность в машиностроении. Т. III. Инерционные нагрузки. Колебания и ударные нагрузки. Выносливость. Устойчивость. М.: МАШГИЗ, 1959. 1120 с.
- 2. Биргер И.А., Демьянушко И.В. Расчет на прочность вращающихся дисков. М.: Машиностроение, 1978. 247 с.
- 3. Композиционные материалы: Справочник / Под общ. ред. В.В. Васильева, Ю.М. Тарнопольского. М.: Машиностроение, 1990. 512 с.
- 4. Карролл-Порчинский Ц. Материалы будущего: Термостойкие и жаропрочные волокна и волокнистые материалы. М.: Химия, 1966. 238 с.
- 5. Composites: State of Art / Eds. L.W. Weeton, E. Scala. New York: AIME, 1974.
- 6. Композиционные материалы. Справочник / Под ред. Д.М. Карпиноса. Киев: Наук. думка, 1985. 592 с.
- 7. Григоренко Я.М. Изотропные и анизотропные слоистые оболочки вращения переменной жесткости. Киев: Наук. думка, 1973. 228 с.
- 8. Takkar S., Gupta K., Tiwari V., Singh S.P. Dynamics of rotating composite disc // J. Vib. Eng. Technol. 2019. V. 7. № 6. P. 629–637. https://doi.org/10.1007/s42417-019-00155-8
- 9. Rahi A. Lateral vibrations of a microrotating shaft-disk system subjected to an axial load based on the modified strain gradient theory // Mech. Adv. Mater. Struct. 2019. V. 26. № 20. P. 1690–1699. https://doi.org/10.1080/15376494.2018.1444223
- 10. Semka E.V., Artemov M.A., Babkina Y.N., Baranovskii E.S., Shashkin A.I. Mathematical modeling of rotating disk states // J. Phys: conf. Ser. 2020. V. 1479. № 1. P. 12122. https://doi.org/10.1088/1742-6596/1479/1/012122
- 11. Koo K.-N. Influence of rotation on vibration characteristics of thick composite disks // Mech. Adv. Mater. Struct. 2020. V. 27. № 8. P. 676–686. https://doi.org/10.1080/15376494.2018.1490832
- 12. Farukoglu Ö.C., Korkut I. On the elastic limit stresses and failure of rotating variable thickness fiber reinforced composite disk // ZAMM. 2021. V. 101. № 9. E202000356. P. 1–18. https://doi.org/10.1002/zamm.202000356
- 13. Wang B., Wang G., Shi Y., Huang L., Tian K. Stress-constrained thermo-elastic topology optimization of axisymmetric disks considering temperature-dependent material properties // Mech. Adv. Mater. Struct. 2022. V. 29. № 28. P. 7459–7475. https://doi.org/10.1080/15376494.2021.2000080
- 14. Янковский А.П. Построение полного решения задачи определения несущей способности плоского армированного вращающегося диска // Вычислительная механика сплошных сред. 2023. Т. 16. № 3. С. 289–309. https://doi.org/10.7242/1999-6691/2023.16.3.25
- 15. Romanova T.P. Rigid-plastic behavior and bearing capacity of thin flat reinforced rotating disks // Mech. Adv. Mater. Struct. 2024. V. 31. № 30. P. 12721–12739. https://doi.org/10.1080/15376494.2024.2328751
- 16. Янковский А.П. Численный метод определения несущей способности плоских вращающихся армированных дисков // Вычислительная механика сплошных сред. 2024. Т. 17. № 3. С. 290–307. https://doi.org/10.7242/1999-6691/2024.17.3.25
- 17. Ерхов М.И. Теория идеально пластических тел и конструкций. М.: Наука, 1978. 352 с.
- 18. Ишлинский А.Ю., Ивлев Д.Д. Математическая теория пластичности. М.: Физматлит, 2001. 707 с.
- 19. Chakrabarty J. Applied plasticity. 2nd ed. New York: Springer, 2010. 755 p.
- 20. Новожилов В.В., Черных К.Ф., Михайловский Е.И. Линейная теория тонких оболочек. Л.: Политехника, 1991. 656 с.
- 21. Romanova T.P., Yankovskii A.P. Investigation of load-bearing capacity of rigid-plastic reinforced ellipsoidal shells of rotation // Mech. Adv. Mater. Struct. 2024. V. 31. № 18. P. 4387–4398. https://doi.org/10.1080/15376494.2023.2195416
- 22. Romanova T.P., Yankovskii A.P. Load-bearing capacity of rigid-plastic reinforced shallow shells and plates // Mech. Adv. Mater. Struct. 2022. V. 29. № 26. P. 5651–5665. https://doi.org/10.1080/15376494.2021.1961952
- 23. Немировский Ю.В., Янковский А.П. О некоторых особенностях уравнений оболочек, армированных волокнами постоянного поперечного сечения // Механика композиционных материалов и конструкций. 1997. Т. 3. № 2. С. 20–40.
- 24. Баничук Н.В., Кобелев В.В., Рикард Р.Б. Оптимизация элементов конструкций из композиционных материалов. М.: Машиностроение, 1988. 224 с.
- 25. Hu L.W. Modified Tresks’s yield condition and associated flow rules for anisotropic materials and applications // J. Franchin Inst. 1958. V. 265. № 3. P. 187–204. https://doi.org/10.1016/0016-0032 (58)90551-9
- 26. Ramu S.A., Iyengar K.J. Plastic response of orthotropic spherical shells under blast loading // Nucl. Eng. Des. 1979. V. 55. № 3. P. 363–373. https://doi.org/10.1016/0029-5493 (79)90115-8
- 27. Онат Е. Пластическое разрушение цилиндрических оболочек под действием осесимметричной нагрузки // Механика. Сборники переводов и обзоров иностранной периодической литературы. 1955. № 6 (34). С. 122–130.
- 28. Немировский Ю.В. Предельное равновесие многослойных армированных осесимметричных оболочек // Изв. AH CCCP. MTT. 1969. № 6. С. 80–89.
- 29. Romanova T.P., Yankovskii A.P. Piecewise-linear yield loci of angle-ply reinforced medium of different-resisting rigid-plastic materials at 2D stress state // Mechanics of Solids. 2020. V. 55. № 8. P. 1235–1252. https://doi.org/10.3103/S0025654420080221
- 30. Samarskii A.A. The theory of difference schemes. New York: Marcel Dekker Inc., 2001. 786 p.
- 31. Зуховщикий С.И., Авдеева Л.И. Линейное и выпуклое программирование. М.: Наука, 1964. 348 с.
- 32. Ильюшин А.А. Труды (1946–1966). T. 2. Пластичность / Сост. Е.А. Ильюшина, М.Р. Короткина. М.: Физматлит, 2004. 480 с.
- 33. Vasiliev V.V., Morozov E. Advanced Mechanics of Composite Materials and Structural Elements. Amsterdam: Elsevier, 2013. 412 p.
- 34. Кармо M.П. Дифференциальная геометрия кривых и поверхностей. М.—Ижевск: Институт компьютерных исследований, 2013. 608 с.