RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

MODELING OF THE PROCESS OF HOT ISOSTATIC PRESSING OF SINGLE CRYSTALS OF NICKEL-BASED SUPERALLOY, TAKING INTO ACCOUNT PLASTIC FLOW AND VACANCY DIFFUSION

PII
S30346428S1026351925030032-1
DOI
10.7868/S3034642825030032
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
38-58
Abstract
A complex model of pore annihilation during hot isostatic pressing (HIP), which takes into account the simultaneous action of the mechanisms of material plastic flow and diffusive pore dissolution due to the emission of vacancies by the pore surface, has been proposed. The obtained mathematical equations are applied to analyze the kinetics of pore annihilation in single crystals of the nickel-based superalloy CMSX-4 during HIP used for this alloy in industry. It follows from the analysis that both mechanisms (plastic flow and vacancy diffusion) make comparable contributions to the reduction of pore volume under these conditions. As the HIP pressure increases, the contribution of plastic flow increases, while the contribution of vacancy diffusion decreases. Large pores shrink in volume mainly due to the mechanism of plastic flow, however, at the final stage of pore closure, the mechanism of vacancy diffusion is more active. To ensure reliable pore healing by the vacancy mechanism, HIP should be carried out at a moderate argon pressure in the HIP plant.
Keywords
монокристаллы никелевых жаропрочных сплавов пористость горячее изостатическое прессование пластическая деформация диффузия вакансий
Date of publication
26.02.2025
Year of publication
2025
Number of purchasers
0
Views
15

References

  1. 1. Шалин Р.Е., Светлов И.Л., Качанов Е.Б., Толораия В.Н., Гаврилин О.С. Монокристаллы никелевых жаропрочных сплавов. М: Машиностроение, 1997. 333 с.
  2. 2. Reed R.C. The Superalloys: Fundamentals and applications. Cambridge: Cambridge University Press, 2006. 372 p. https://doi.org/10.1017/CBO9780511541285
  3. 3. Epishin A., Link T., Brückner U., Portella P.D. Investigation of porosity in single-crystal nickel-base superalloys // Proc. the 7th Liege Conference on Materials for Advanced Power Engineering. FZ Jülich, 2002. P. 217-226.
  4. 4. Link T., Zabler S., Epishin A. et.al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys // Mat. Sci. Eng. A. 2006. V. 425. P. 47-54. https://doi.org/10.1016/j.msea.2006.03.005
  5. 5. Epishin A., Link T., Svetlov I.L. et.al. Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys // Int. J. Mater. Res. 2013. V. 104. P. 776-782. https://doi.org/10.3139/146.110924
  6. 6. Lecomte-Beckers J. Study of microporosity formation in nickel-base superalloys // Metall. Trans. A. 1988. V. 19. № 9. P. 2341-2348. https://doi.org/10.1007/BF02645058
  7. 7. Anton D.L., Giamei A.F. Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy // Mater. Sci. Eng. 1985. V. 76. P. 173-180. https://doi.org/10.1016/0025-5416 (85)90091-7
  8. 8. Toloraya V.N., Zuev A.G., Svetlov I.L. Effect of conditions of directed solidification and heat treatment on porosity in creep resistant nickel alloy single crystals // Izv. Akad. Nauk SSSR. Metally. 1991. № 5. P. 70-76.
  9. 9. Fullagar K.P.L., Broomfield R.W., Hulands M. et al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades // J. Eng. Gas Turbines Power. 1996. V. 118. P. 380-388. https://doi.org/10.1115/1.2816600
  10. 10. Epishin A.I., Link T., Fedelich B. et al. Hot isostatic pressing of single-crystal Ni-base superalloys: mechanism of pore closure and effect on mechanical properties // MATEC Web of Conferences. 2014. V. 14. P. 08003. https://doi.org/10.1051/matecconf/20141408003
  11. 11. Reed R.C., Cox D.C., Rae C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150 °C // Mater. Sci. Eng. A. 2007. V. 448. № 1-2. P. 88-96. https://doi.org/10.1016/j.msea.2006.11.101
  12. 12. Epishin A., Fedelich B., Link T. et al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling // Mat. Sci. Eng. A. 2013. V. 586. P. 342-349. https://doi.org/10.1016/j.msea.2013.08.034
  13. 13. Епишин А.И., Бокштейн Б.С., Светлов И.Л. и др. Вакансионная модель аннигиляции пор в процессе горячего изостатического прессования монокристаллов никелевых жаропрочных сплавов // Материаловедение. 2017. № 5. С. 3-12.
  14. 14. Епишин А.И., Лисовенко Д.С., Алымов М.И. Модель диффузионной аннигиляции газонаполненных сферических пор в процессе горячего изостатического прессования // Известия РАН. МТТ. 2025. № 1. С. 136-157. https://doi.org/10.31857/S1026351925010071
  15. 15. Čadek J. The back stress concept in power law creep of metals: A review // Mater. Sci. Eng. 1987. V. 94. P. 79-92. https://doi.org/10.1016/0025-5416 (87)90324-7
  16. 16. Epishin A., Fedelich B., Nolze G. et al. Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature // Metall. Mater. Trans. A. 2018. V. 49. P. 3973-3987. https://doi.org/10.1007/s11661-018-4729-6
  17. 17. Epishin A.I., Fedelich B., Viguier B. et al. Creep of single-crystals of nickel-base γ-alloy at temperatures between 1150 °C and 1288 °C // Mater. Sci. Eng. A. 2021. V. 825. P. 141880. https://doi.org/10.1016/j.msea.2021.141880
  18. 18. Epishin A., Camin B., Hansen L. et. al. Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing // Adv. Eng. Mater. 2020. V. 23. № 7. P. 2100211. https://doi.org/10.2139/ssrn.3751560
  19. 19. Klingelhöffer H., Epishin A., Link T. Low cycle fatigue of the single-crystal nickel-base superalloy CMSX-4 - Anistropy and effect of creep damage // Mater. Testing. 2009. V. 51. № 5. P. 291-294. https://doi.org/10.3139/120.110035
  20. 20. Епишин А.И., Алымов М.И. Деформация и разрушение монокристаллов никелевых жаропрочных сплавов CMSX-4 и CMSX-10 в условиях ползучести и усталостного нагружения // Деформация и разрушение материалов. 2023. № 1. С. 11-18. https://doi.org/10.31044/1814-4632-2023-1-11-18
  21. 21. Epishin A.I., Nolze G., Alymov M.I. Pore morphology in single crystals of a nickel-based superalloy after hot isostatic pressing // Metall. Mater. Trans. A. 2023. V. 54. P. 371-379. https://doi.org/10.1007/s11661-022-06893-x
  22. 22. Орлов М.А. Технологическое обеспечение ресурса рабочих лопаток первых ступеней турбины авиационных и наземных газотурбинных двигателей. Дисс. …д-ра тех. наук. М., 2008. 207 с.
  23. 23. Epishin A., Link T., Portella P.D., Brückner U. Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy // Acta Mater. 2000. V. 48. № 16. P. 4169-4177. https://doi.org/10.1016/S1359-6454 (00)00197-X
  24. 24. Wilkinson D.S, Ashby M.F Pressure sintering by power law creep // Acta Metallurgica. 1975. V. 23. № 11. P. 1277-1285. https://doi.org/10.1016/0001-6160 (75)90136-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library