RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

On accounting for surface effects in bending of ultrathin plates

PII
S30346428S1026351925020141-1
DOI
10.7868/S3034642825020141
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
238-266
Abstract
The equations for axisymmetric bending of a circular plate of the Voepl-von Kármán type are given that account forsurface effects: the presence of a surface layer characterized by its elastic constants and initial stresses, as well as the presence of initial volumetric stresses. An asymptotic solution for large deflections of the problem of a circular uniformly loaded rigidly clamped plate is obtained under the assumption of constant tensile forces. An assessment was made of the plate parameters at which surface effects become significant.
Keywords
пластина Фёппля – фон Кармана поверхностная упругость большие прогибы собственные деформации
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
33

References

  1. 1. Израелашвили Дж.Н. Межмолекулярные и поверхностные силы. М.: Научный мир, 2011. 431 с.
  2. 2. Shuttleworth R. The surface tension of solids // Proc. Phys. Soc. 1950. V. A63. P. 444–457. https://doi.org/10.1088/0370-1298/63/5/302
  3. 3. Gurtin, M.E. and Murdoch, A.I. A continuum theory of elastic material surfaces // Arch. Ration. Mech. Anal. 1975. V.57. № 4. P. 291–323. https://doi.org/10.1007/BF00261375
  4. 4. Cahn J.W., Larche F. Surface stress and the chemical equilibrium of small crystals. II. Solid particles embedded in a solid matrix // Acta Metallurgica. 1982. V. 30. № 1. P. 51–56. https://doi.org/10.1016/0001-6160 (82)90043-8
  5. 5. Подстригач Я.С., Повстенко Ю.З. Введение в механику поверхностных явлений в деформируемых твердых телах. Киев: Наук. Думка, 1985. 200 с.
  6. 6. Hashin Z. Thermoelastic properties of fiber composites with imperfect interface // Mech. Mater. 1990. V. 8. № 4. P. 333–348. https://doi.org/10.1016/0167-6636 (90)90051-G
  7. 7. Cammarata R.C. Surface and interface stress effects in thin films // Progr. Surf. Sci. 1994. V. 46. № 1. P. 1–38. https://doi.org/10.1016/0079-6816 (94)90005-1
  8. 8. Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures // Surf. Sci. Rep. 1997. V. 29. № 5-6. P. 195–263. https://doi.org/10.1016/S0167-5729 (97)00010-1
  9. 9. Miller R.E., Shenoy V.B. Size-dependent elastic properties of nanosized structural elements // Nanotechnology. 2000. V. 11. № 3. P. 139–147. https://doi.org/10.1088/0957-4484/11/3/301
  10. 10. Müller P., Saul A. Elastic effects on surface physics // Surf. Sci. Rep. 2004. V. 54. № 5–8. P. 157–258. https://doi.org/10.1016/j.surfrep.2004.05.001
  11. 11. Jiang B., Weng G.J. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials // J. Mech. Phys. Solids. 2004. V. 52. № 5. P. 1125–1149. https://doi.org/10.1016/j.jmps.2003.09.002
  12. 12. Murdoch, A.I. Some fundamental aspects of surface modeling // J. Elasticity. 2005. V. 80. P. 33–52. https://doi.org/10.1007/s10659-005-9024-2
  13. 13. Shenoy V.B. Atomic calculations of elastic properties of metallic fcc crystal surfaces // Phys. Rev. B. 2005. V. 71. № 9. P. 094104. https://doi.org/10.1103/PhysRevB.71.094104
  14. 14. Tan H., Liu C., Huang Y., Geubelle P.H. The cohesive law for the particle/matrix interfaces in high explosives // J. Mech. Phys. Solids. 2005. V. 53. № 3. P. 1892–1917. https://doi.org/10.1016/j.jmps.2005.01.009
  15. 15. Eremeyev, V.A., Altenbach, H., Morozov, N.F. The influence of surface tension on the effective stiffness of nanosize plates // Dokl. Phys. 2009. V. 54. P. 98–100. https://doi.org/10.1134/S102833580902013X
  16. 16. Альтенбах Х., Еремеев В.А., Морозов Н.Ф. Об уравнениях линейной теории оболочек при учете поверхностных напряжений // МТТ. 2010. № 3. C. 30–44.
  17. 17. Goldstein R.V., Gorodtsov V.A., Ustinov K.V. Effect of residual stress and surface elasticity on deformation of nanometer spherical inclusions in an elastic matrix // Phys. Mesomech. 2010. V. 13. № 5–6. P. 318–328. https://doi.org/10.1016/j.physme.2010.11.012
  18. 18. Ustinov K.B., Goldstein R.V., Gorodtsov V.A. On the modeling of surface and interface elastic effects in case of eigenstrains // Surface Effects in Solid Mechanics. Advanced Structured Materials. Berlin: Springer, 2013. V. 30. 193 p. https://doi.org/10.1007/978-3-642-35783-1_13
  19. 19. Goldstein, R.V., Gorodtsov, V.A., Ustinov, K.B. On surface elasticity theory for plane interfaces // Phys. Mesomech. 2014. V. 17. P. 30–38. https://doi.org/10.1134/S1029959914010044
  20. 20. Gorodtsov V.A., Lisovenko D.S., Ustinov K.B. Spherical inclusion in an elastic matrix in the presence of eigenstrain, taking into account the influence of the properties of the interface, considered as the limit of a layer of finite thickness // Mech. Solids. 2019. V. 54. № 4. P. 514–522. https://doi.org/10.3103/S0025654419040034
  21. 21. Nanofabrication: Nanolithography techniques and their applications. IOP Publishing Ltd, 2020. 450 p. https://doi.org/10.1088/978-0-7503-2608-7
  22. 22. Салащенко Н.Н., Чхало Н.И., Дюжев Н.А. Безмасочная рентгеновская литография на основе МОЭМС и микрофокусных рентгеновских трубок // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2018. № 10. С. 10–20. https://doi.org/10.1134/S0207352818100165
  23. 23. Silverman J.P. Challenges and progress in X-ray lithography // J. Vac. Sci. Technol. B. 1998. V. 16. № 6. P. 31–37. https://doi.org/10.1116/1.590452
  24. 24. Vladimirsky Y., Bourdillon A., et al. Demagnication in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diraction // J. Phys. D: Appl. Phys. 1999. V. 32. P. 114–118. https://doi.org/10.1088/0022-3727/32/22/102
  25. 25. Cheng Y.L., Li M.L., Lin J.H., Lai J.H, Ke C.T., Huang Y.C. Development of dynamic mask photolithography system // Proceedings of the IEEE International Conference on Mechatronics (ICM’05). 2005. P. 467–471. https://doi.org/10.1109/ICMECH.2005.1529302
  26. 26. Esmaeili A., Steinmann P., Javili A. Surface plasticity: theory and computation // Comput. Mech. 2018. V. 62. P. 617–634. https://doi.org/10.1007/s00466-017-1517-x
  27. 27. Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука, 1979. 560 с.
  28. 28. Zhou L.G., Huang H. Are surfaces elastically softer or stiffer? // Appl. Phys. Lett. 2004. V. 84. № 11. P. 1940–1942. https://doi.org/10.1063/1.1682698
  29. 29. deWit R. Theory of disclinations: II. Continuous and discrete disclinations in anisotropic elasticity // J. Res. Nat. Bur. Stand. Sec. A: Phys. Ch. 1973. V. 77A. № 1. P. 49–100. https://doi.org/10.6028/jres.077A.003
  30. 30. Kröner E. Continuum theory of defects // Physics of defects. V. 35. P. 217–315.
  31. 31. Nicholson M.M. Surface tension in ionic crystals // Proc. Roy. Soc. A. 1955. V. 228. № 1175. P. 490. https://doi.org/10.1098/rspa.1955.0064
  32. 32. Leo P.H, Sekerka R.F. The effect of surface stress on crystal–melt and crystal–crystal equilibrium. Berlin: Springer, 1999. pp. 176–195. https://doi.org/10.1007/978-3-642-59938-5_8
  33. 33. Fischer F.D., Simha N.K., Svoboda J. Kinetics of diffusional phase transformation in multicomponent elastic-plastic materials // ASME J. Eng. Mater. Technol. 2003. V. 125. № 3. P. 266–276. https://doi.org/10.1115/1.1586939
  34. 34. Yang F. Effect of interfacial stresses on the elastic behavior of nanocomposite materials // J. Appl. Phys. 2006. V. 99. № 5. P. 054306. https://doi.org/10.1063/1.2179140
  35. 35. Griffith A.A. The phenomena of rupture and flow in solids // Philos. Trans. R. Soc. Lond. 1921. V. 221. № 582–593. P. 163–198. https://doi.org/10.1098/rsta.1921.0006
  36. 36. Nejat Pishkenari H., Yousefi F.S., TaghiBakhshi A. Determination of surface properties and elastic constants of FCC metals: a comparison among different EAM potentials in thin film and bulk scale // Mater. Res. Express. 2018. V. 6. № 1. P. 015020. https://doi.org/10.1088/2053-1591/aae49b
  37. 37. Vo T., Reeder B., Damone, A., Newell, P. Effect of domain size, boundary, and loading conditions on mechanical properties of amorphous silica: a reactive molecular dynamics study // Nanomaterials. 2020. V. 10. № 1. P. 54. https://doi.org/10.3390/nano10010054
  38. 38. Tang Z, Chen Y, Ye W. Calculation of surface properties of cubic and hexagonal crystals through molecular statics simulations // Crystals. 2020. V. 10. № 4. P. 329. https://doi.org/10.3390/cryst10040329
  39. 39. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Гидродинамика. 3-е изд., испр. М.: Наука. Гл. ред. физ.-мат. лит., 1986. 736 с. (т. VI)
  40. 40. Лычев С.А. Несовместные деформации гибких пластин // Ученые записки казанского университета. Серия физико-математические науки. 2023. Т. 165. № 4. С. 361–388. https://doi.org/10.26907/2541-7746.2023.4.361-388
  41. 41. Altenbach, H., Altenbach, J., Kissing, W. Mechanics of Composite Structural Elements. Berlin: Springer, 2004. 470 p. https://doi.org/10.1007/978-3-662-08589-9
  42. 42. Тимошенко С.П., Войновский-Кригер С. Пластинки и оболочки. М.: Физматгиз, 1963. 635 с.
  43. 43. Лычев С.А., Дигилов А.В., Пивоваров Н.А. Изгиб кругового диска: от цилиндра к ультратонкой мембране // Вестник Самарского университета. Естественнонаучная серия. 2023. Т. 29. № 4. С. 77–105. https://doi.org/10.18287/2541-7525-2023-29-4-77-105
  44. 44. Устинов К.Б., Гандилян Д.В. О граничных условиях для тонкой круглой пластины, сопряженной с массивным телом // Вестник Самарского университета. Естественнонаучная серия. 2024. Т. 30. № 1. C. 50–63. https://doi.org/10.18287/2541-7525-2024-30-1-50-63
  45. 45. Анурьев В.И. Справочник конструктора-машиностроителя в 3 т. Т. 1. М.: Машиностроение, 2001.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library