RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Modeling of hydraulic autofrettage of thick-walled cylindrical shells taking into account elastoplastic anisotropy caused by the Baushinger effect

PII
S30346428S1026351925020094-1
DOI
10.7868/S3034642825020094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
149-178
Abstract
The present work is aimed at developing a method for calculating residual stresses during autofrettage of cylindrical shells, allowing for elastic-plastic anisotropy caused by the Bauschinger effect. The proposed calculation method is based on the joint solution by the method of variable elasticity parameters of integral equations of equilibrium and compatibility of deformations, written in Euler coordinates for nonlinear deformation measures. The results of the work are in good agreement with the results of other authors obtained with similar initial data.
Keywords
гидравлическое автофретирование упругопластическая анизотропия эффект Баушингера вторичные пластические деформации нелинейный закон упрочнения
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
16

References

  1. 1. Fryer D.M., Fryer D.M., Harvey J.F. High Pressure Vessels. Harvey, Boston: Springer, 2012. 216 p.
  2. 2. Shufen R., Shufen R., Dixit U.S. A review of theoretical and experimental research on various autofrettage processes // J. Press. Vessel Technol. 2018. V. 140. № 5. P. 15.
  3. 3. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 399 с.
  4. 4. Kholdi M., Loghman A., Ashrafi H. Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis // Proc. Inst. Mech. Eng., Part L. 2020. V. 234. № 1. P. 186–197. https://doi.org/10.1177/1464420719882958
  5. 5. Huang X.P., Cheng C.W. Autofrettage analysis of thick-walled cylinder based on tensile-compressive curve of material // Key Engineering Materials. 2004. V. 274–276. P. 1035–1040. https://doi.org/10.4028/www.scientific.net/KEM.274-276.1035
  6. 6. Chen P.C.T. The Bauschinger and hardening effect on residual stresses in an autofrettaged thick-walled cylinder // J. Pressure Vessel Technol. 1986. V. 108. № 1. P. 108–112. https://doi.org/10.1115/1.3264743
  7. 7. Huang X.P. A general autofrettage model of a thick-walled cylinder based on tensile–compressive stress–strain curve of a material // J. Strain Anal. Eng. Design. 2005. V. 40. № 6. P. 599–607. https://doi.org/10.1243/030932405X16070
  8. 8. Hu Z., Penumarthy C. Computer modeling and optimization of swage autofrettage process of a thick-walled cylinder incorporating Bauschinger effect // American Transactions on Engineering & Applied Sciences. 2014. V. 3. № 1. P. 31–63.
  9. 9. Perl M., Perry J. An experimental-numerical determination of the three-dimensional autofrettage residual stress field incorporating Bauschinger effects // J. Press. Vessel Technol. 2006. V. 128. № 2. P. 173–178. https://doi.org/10.1115/1.2172959
  10. 10. Hu Z., Parker A.P. Swage autofrettage analysis – Current status and future prospects // Inter. J. Press. Vessels Piping. 2019. V. 171. P. 233–241. https://doi.org/10.1016/j.ijpvp.2019.03.007
  11. 11. Zare H.R., Darijani H. A novel autofrettage method for strengthening and design of thick-walled cylinders // Mater. Des. 2016. V. 105. P. 366–374. https://doi.org/10.1016/j.matdes.2016.05.062
  12. 12. Zare H.R., Darijani H. Strengthening and design of the linear hardening thickwalle cylinders using the new method of rotational autofrettage // Int. J. Mech. Sci. 2017. V. 124–125. P. 1–8. https://doi.org/10.1016/j.ijmecsci.2017.02.015
  13. 13. Kamal S.M. Estimation of optimum rotational speed for rotational autofrettage of disks incorporating Bauschinger effect // Mech. Base. Des. Struct. Mach. 2020. № 50. № 7. P. 1–20. http://dx.doi.org/10.1080/15397734.2020.1780608
  14. 14. Москвитин В.В. Пластичность при переменных нагружениях. М.: Изд-во МГУ, 1965. 263 с.
  15. 15. Feoktistov S.I., Andrianov I.K. Analytical description of the Bauschinger effect using experimental data and the generalized Мasing principle // Mater. Phys. Mech. 2024. V. 52. № 1. P. 49–59. http://dx.doi.org/10.18149/MPM.5212024_5
  16. 16. Адигамов Р.Р., Андреев В.А., Рогачев С.О., Федотов Е.С., Хадеев Г.Е., Юсупов В.С. Проявление эффекта Баушингера при знакопеременной деформации // Черная металлургия: Известия вузов. 2022. Т. 65. № 7. С. 455–466. https://doi.org/10.17073/0368-0797-2022-7-455-466
  17. 17. Пыхтунова С.В. К вопросу об эффекте Баушингера // Качество в обработке материалов. 2015. № 1(3). С. 75–77.
  18. 18. Нигматуллин В.И. Экспериментальное исследование влияния предварительной пластической деформации на поведение конструкционных сталей при обратном нагружении // Труды ЦНИИ им. акад. А.Н. Крылова. 2011. № 60. С. 119–132.
  19. 19. Perry J., Perl M., Shneck R., Haroush S. The Influence of the Bauschinger Effect on the Yield Stress, Young’s Modulus, and Poisson’s Ratio of a Gun Barrel Steel // J. Press. Vessel Technol. 2006. V. 128. № 2. P. 179–184. https://doi.org/10.1115/1.2172962
  20. 20. Dell H.D., Eliseev V.V., Shapievskaya V.A. Experimental study of the bauschinger effect for anisotropic metals // Mechanics of Solids. 2014. V. 49. № 5. P. 561–567. https://doi.org/10.3103/S0025654414050070
  21. 21. Parker A.P. Characterization of steels using a revised kinematic hardening model incorporating Bauschinger effect // J. Press. Vessel Technol. 2003. V. 125. № 3. P. 277–281. https://doi.org/10.1115/1.1593071
  22. 22. Hu Z., Parker A.P. Implementation and validation of true material constitutive model for accurate modeling of thick-walled cylinder swage autofrettage // Int. J. Press. Vessels and Piping. 2021. V. 191. P. 1–10. https://doi.org/10.1016/j.ijpvp.2021.104378
  23. 23. Faghih S., Jahed H., Behravesh S. Variable Material Properties Approach: A Review on Twenty Years of Progress // J. Press. Vessel Technol. 2018. V. 140. № 5. P. 050803. https://doi.org/10.1115/1.4039068
  24. 24. Jahed H., Dubey R.N. An Axisymmetric Method of ElasticPlastic Analysis Capable of Predicting Residual Stress Field // ASME J. Press. Vessel Technology. 1997. V. 119. № 3. P. 264–273. https://doi.org/10.1115/1.2842303
  25. 25. Биргер И.А. Круглые пластинки и оболочки вращения. М.: Оборонгиз, 1961. 368 с.
  26. 26. Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. М.: Наука, 1986. 560 с.
  27. 27. Писаренко Г.С., Можаровский Н.С. Уравнения и краевые задачи теории пластичности и ползучести. Киев: Наук. Думка, 1981. 496 с.
  28. 28. Крыжевич Г.Б., Филатов А.Р. Модель упругопластического деформирования алюминиевых сплавов и критерии малоцикловой усталости конструкций // Труды Крыловского государственного научного центра. 2018. Спец. Вып. № 2. С. 85–95. https://doi.org/10.24937/2542-2324-2018-2-S-I-85-95
  29. 29. Feoktistov S.I., Andrianov I.K. Method for calculating the forming limit of a pipe blank under expansion taking into account nonlinear plasticity // J. Appl. Mech. Tech. Phys. 2023. V. 64. № 4. P. 721–727. https://doi.org/10.1134/s0021894423040193
  30. 30. Durban D. Large strain solution for pressurized elasto/plastic tubes // J. Appl. Mech, Trans. ASME. 1979. V. 46. № 1. P 228–230. https://doi.org/10.1115/1.3424511
  31. 31. Durban D. A finite strain axially-symmetric solution for elastic tubes // Int. J. Solids Struct. 1988. V. 24. № 7. P. 675–682. https://doi.org/10.1016/0020-7683 (88)90016-9
  32. 32. Durban D. Finite straining of pressurized compressible elastoplastic tubes // Int. J. Eng. 1988. V. 26. № 9. P. 939–950. https://doi.org/10.1016/0020-7225 (88)90023-7
  33. 33. Durban D., Kubi M. A General solution for the pressurized elastoplastic tube // J. Appl. Mech. 1992. № 59. № 1. P. 20–26. https://doi.org/10.1115/1.2899431
  34. 34. Феоктистов С.И. Андрианов И.К. Уравнения совместности логарифмических деформаций в координатах Эйлера для решения осесимметричных процессов обработки металлов давлением // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2021. № 7 (55). С. 26–30. https://doi.org/10.17084/20764359-2021-55-26
  35. 35. Durban D., Kubi M. A General solution for the pressurized elastoplastic tube // J. Appl. Mech. 1992. V. 59. № 1. P. 20–26. https://doi.org/10.1115/1.2899431
  36. 36. Феоктистов С.И., Андрианов И.К., Тхет Л. Моделирование напряженно-деформированного состояния толстостенных цилиндрических оболочек с учетом физической нелинейности материала // Ученые записки Комсомольского-на-Амуре государственного технического университета. 2022. № 3 (59). С. 12–20. https://doi.org/10.17084/20764359-2022-59-12
  37. 37. Andrianov I.K., Feoktistov S.I. Inverse problem of elastic-plastic deformation of a free thick-walled cylindrical shell taking into account the nonlinear law of hardening // Problems of Strength and Plasticity. 2024. V. 86. № 3. P. 259–269. https://doi.org/10.32326/1814-9146-2024-86-3-259-269
  38. 38. Смирнов-Аляев Г.А. Теория автоскрепления цилиндров. М.: Оборонгиз, 1940. 284 с.
  39. 39. Troiano E., Underwood J.H., Parker A.P. Finite Element Investigation of Bauschinger Effect in High-Strength A723 Pressure Vessel Steel // J. Press. Vessel Technol. 2006. V. 128. № 2. P. 185–189. https://doi.org/10.1115/1.2172616
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library