RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Generalized cesaro formulas in 3D and 4D elasticity theories

PII
S30346428S1026351925020082-1
DOI
10.7868/S3034642825020082
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
137-148
Abstract
Generalized Cesaro formulas are found, allowing to determine the displacement field with an accuracy of up to quadratic polynomials through integro-differential operators from the strain tensor-deviator in 3D elasticity theory and 4D elasticity theory. It is shown that quadratures for the pseudovector (pseudotensor in 4D elasticity) of local rotations and deformation of volume change are determined by the strain deviator field with an accuracy of up to linear polynomials in coordinates. Conditions for the existence of the listed quadratures are presented in the form of five (nine for 4D) third-differential order compatibility equations with respect to the strain tensor-deviator components.
Keywords
кинематическая модель формулы Чезаро уравнения совместности обобщенные уравнения совместности обобщенные формулы Чезаро
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
16

References

  1. 1. Лейбензон Л.С. Курс теории упругости. М.: Наука, 1947.
  2. 2. Победря Б.Е., Шешенин С.В., Холматов Т. Задача в напряжениях. Ташкент: ФАН, 1988. 197 с.
  3. 3. Георгиевский Д.В. Уравнения совместности в системах, основанных на обобщенных кинематических соотношениях Коши // Изв. РАН. Механ. твердого тела. 2014. № 1. 127–134.
  4. 4. Georgievskii D.V., Pobedrya B.E. On the compatibility equations in terms of stresses in many-dimensional elastic medium // Russ. J. Math. Phys. 2015. V. 22. P. 6–8.
  5. 5. Ces˘aro E. Sulle formole del Volterra, fondamentali nella teoria delle distorsioni elastiche // Nuovo Cim. 1906. V. 12. P. 143–154.
  6. 6. Лурье С.А., Белов П.А. Обобщенные формулы Чезаро и уравнения совместности третьего порядка // Вестник Московского университета. Серия 1. Математика. Механика. 2023. № 4. с. 61–64. http://doi.org/10.55959/msu0579-9368-1-64-4-11
  7. 7. Poynting J.H. On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening on loaded wires when twisted // Proc. Roy. Soc. Lond. A. 1909. V. 82. № 557. P. 546–559. http://doi.org/10.1098/rspa.1909.0059
  8. 8. Лурье А.И. Нелинейная теория упругости.М.; Наука, 1980. 512с.
  9. 9. Гoльдштейн P.B., Гopoдцов B.A., Лисовенко Д.C. Линейный эффект Пойнтинга при кручении и растяжении криволинейно-анизотропных трубок // Доклады PAH. 2015. T. 464. № 1. C. 35–38. http://doi.org/10.7868/S086956521525009X
  10. 10. Гoльдштейн P.B., Гopoдцов B.A., Лисовенко Д.C. Эффект Пойнтинга для цилиндрически – анизотропных нано/микротрубок // Физическая механика. 2016. № 1. C. 5–14
  11. 11. Lurie S.A., Belov P.A. On the nature of the relaxation time, the Maxwell–Cattaneo and Fourier law in the thermodynamics of a continuous medium, and the scale effects in thermal conductivity // Contin. Mech. Thermodyn. 2020. № 32. P. 709–728. https://doi.org/10.1007/s00161-018-0718-7
  12. 12. Lomakin E.V., Lurie S.A., Belov P.A., Rabinskiy L.N. On the generalized heat conduction laws in the reversible thermodynamics of a continuous medium // Doklady Physics. 2018. V. 63. P. 503–507. https://doi.org/10.1134/S102833581812011X
  13. 13. Vasiliev V.V., Fedorov L.V. Spherically symmetric problem of general relativity for a fluid sphere // J. Mod. Phys. 2024. V. 15. № 3. P. 401–415. https://doi.org/10.4236/jmp.2024.154017
  14. 14. Vasiliev V., Fedorov L. Spherically symmetric problem of general relativity for an elastic solid sphere // J. Mod. Phys. 2023. V. 14. № 6. P. 818–832. https://doi.org/10.4236/jmp.2023.146047
  15. 15. Müller W.H., Vilchevskaya E.N., Eremeyev V.A. Electrodynamics from the viewpoint of modern continuum theory — A review // Z. Angew. Math. Mech. 2023. V. 103. № 3. e202200179. https://doi.org/10.1002/zamm.202200179
  16. 16. Girifalco, Louis A. The space–time continuum // The Universal Force: Gravity – Creator of Worlds. Oxford: Oxford Academic, 2007. № 1. P. 188–194. https://doi.org/10.1093/acprof:oso/9780199228966.003.0014
  17. 17. Millette P.A. Elastodynamics of the Spacetime Continuum: A Spacetime Physics Theory of Gravitation, Electromagnetism and Quantum Physics. New Mexico, USA: American Research Press, 2017. http://ptep-online.com/index files/books.htm
  18. 18. Belov P.A., Lurie S.A. Mechanistic model of gravitation // Lobachevskii J. Math. 2023. V. 44. P. 2240–2250. https://doi.org/10.1134/S1995080223060094
  19. 19. Sokolnikoff I.S. Tensor analysis: theory and applications to geometry and mechanics of continua. Wiley, New York: 1964.
  20. 20. Вайнберг С. Космология. М.: УРСС, 2013. С. 57–59.
  21. 21. Блинников С.И., Долгов А.Д. Космологическое ускорение // УФН. 2019. Т. 189. № 6. С. 561–602.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library