RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Multifunctional shuttle for processing small diameter and ultra-thin semicon-ductor wafers

PII
S30346428S1026351925020041-1
DOI
10.7868/S3034642825020041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
68-82
Abstract
In a first for Russia, a 100 mm diameter wafer was processed to create holes for TSV structures using automated equipment designed for 150mm diameter wafers without needing to reconfigure the installations. A shuttle wafer was developed for this purpose. The reliability of the silicon shuttle was determined through experimental studies of the mechanical strength of silicon. The thickness of the ultra-thin Si wafer that can be processed without damage in the shuttle wafer on installations with a vacuum table was calculated based on the data obtained.
Keywords
микросборка трехмерная интеграция TSV рельеф поверхности фотолитография ПХТ временный бондинг
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
18

References

  1. 1. Panfeng J. et al. High quality and uniformity GaN grown on 150 mm Si substrate using in-situ NH3 pulse flow cleaning process // Superlattices Microstruct. 2017. V. 104. P. 112–117. https://doi.org/10.1016/j.spmi.2017.02.019
  2. 2. Musolino M. et al. Paving the way toward the world’s first 200mm SiC pilot line // Mater. Sci. Semicond. Process. 2021. V. 135. P. 106088. https://doi.org/10.1016/j.mssp.2021.106088
  3. 3. Peter O.H. The 300 mm silicon wafer – a cost and technology challenge // Microelectron. Eng. 2001. V. 56. № 1–2. P. 3–13. https://doi.org/10.1016/S0167-9317 (00)00499-8
  4. 4. Goldstein M., Watanabe M. 450 mm Silicon Wafers Challenges - Wafer Thickness Scaling // ECS Transactions. 2008. V. 16. № 6. P. 3–13. https://doi.org/10.1149/1.2980288
  5. 5. Sotnik L., Hubar A. Impact of automation and cals technologies on human factor in production // The 5th International scientific and practical conference “Perspectives of contemporary science: theory and practice”. 2024. P. 243.
  6. 6. D’Addona D. et al. Adaptive automation and human factors in manufacturing: An experimental assessment for a cognitive approach // CIRP Annals. 2018. V. 67. № 1. https://doi.org/10.1016/j.cirp.2018.04.123
  7. 7. Shiojima T. et al. Development of Self-releasing adhesive tape as a temporary bonding material for 3D integration // IEEE 70th Electronic Components and Technology Conference. 2020. P. 75–82. https://doi.org/10.1109/ECTC32862.2020.00025
  8. 8. Sakamoto Y. et al. A Temporary Bonding De-Bonding Tape with High Thermal Resistance and Excellent TTV for 3DIC // International Conference on Electronics Packaging. 2023. P. 39–40. https://doi.org/10.23919/ICEP58572.2023.10129768
  9. 9. Oh S., Zheng T., Bakir M.S. Electrical Characterization of Shielded TSVs With Airgap Isolation for RF/mmWave Applications // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2024. V. 14. № 2. P. 202–210. https://doi.org/10.1109/TCPMT.2024.3358102
  10. 10. Handbook of wafer bonding / Ed. Ramm P., Lu J. Q., Visser Taklo M. Wiley-VCH Verlag & Co. KgaA, 2012. P. 329. https://doi.org/10.1002/9783527644223.ch15
  11. 11. Lychev S. et al. Deformations of Single-Crystal Silicon Circular Plate: Theory and Experiment // Symmetry. 2024. V. 16. № 2. P. 137. https://doi.org/10.3390/sym160201374
  12. 12. Dyuzhev N.A. et al. Study of the Effect of Radiation Exposure on Grain Size and Mechanical Properties of Thin-Film Aluminum // Mechanics of Solids. 2024. V. 59. P. 20–26. https://doi.org/10.1134/S0025654423601040
  13. 13. Дюжев Н.А. и др. Особенности влияния ориентации и размера зерен на механические свойства тонкопленочных мембран Al/Mo // Письма в ЖТФ. 2024. Т. 50. № 9. С. 10–15. https://doi.org/10.61011/PJTF.2024.09.57561.19833
  14. 14. Kozlov V. et al. Study of the mechanical strength of thin silicon wafers in the dependance on their surface treatment during thinning // Tech. Phys. Lett. 2022. № 9. P. 26. https://doi.org/0.21883/TPL.2022.09.55077.19244
  15. 15. Petersen K.E. Silicon as a mechanical material // Proceedings of the IEEE 1982. V. 70. №. 5. P. 420–457. https://doi.org/10.1109/PROC.1982.12331
  16. 16. Lychev S. et al. Deformations of Single-Crystal Silicon Circular Plate: Theory and Experiment // Symmetry. 2024. V. 16. № 2. P. 137. https://doi.org/10.3390/sym16020137
  17. 17. Huda Z., Saufi M., Shaifulazuar. Mechanism of Grain Growth in an Aerospace Aluminum Alloy // J. Ind. Technol. 2006. V. 15. № 2. P. 127–136.
  18. 18. Многофункциональный подложкодержатель для пластин, используемый при изготовлении монолитных интегральных схем: пат. 224497 Рос. Федерация. № 2023122514 / Гусев Е.Э., Иванин П.С., Фомичёв М.Ю., Зольников К.В.; госрегистрация 28.03.24.
  19. 19. Jourdain A., Schleicher A., Vos J. Extreme Wafer Thinning and nano-TSV processing for 3D Heterogeneous Integration // 70th Electronic Components and Technology Conference. 2020. P. 42. https://doi.org/10.1109/ECTC32862.2020.00020
  20. 20. Murugesan M. et al. Nano Ni/Cu-TSVs with an Improved Reliability for 3D-IC Integration Application // 31st Annual SEMI Advanced Semiconductor Manufacturing Conference. 2020. P. 1. https://doi.org/10.1109/ASMC49169.2020.9185397
  21. 21. Dinh Q., Kondo K., Hirato T. Reduction of TSV Pumping // International 3D Systems Integration Conference. 2019. P. 1. https://doi.org/10.1109/3DIC48104.2019.9058846
  22. 22. Shen W-W, Chen K-N. Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV) // Nanoscale Research Letters. 2017. V. 12. № 56. https://doi.org/10.1186/s11671-017-1831-4
  23. 23. Ko C.-T., Chen K.-N. Reliability of key technologies in 3D integration // Microelectron. Reliab. 2013. V. 53. № 1. P. 7. https://doi.org/10.1016/j.microrel.2012.08.011
  24. 24. Dukovic J. et al. Through-Silicon-Via Technology for 3D Integration // IEEE International Memory Workshop. 2010. P. 1. https://doi.org/10.1109/IMW.2010.5488399
  25. 25. Bauer J. et al. Spectroscopic reflectometry for characterization of Through Silicon Via profile of Bosch etching process // J. Vacuum Science & Technology B, 2019. V. 37. № 6. https://doi.org/10.1116/1.5120617
  26. 26. Ham Y.-H., Kim D., Baek K.-H. Metal/Dielectric Liner Formation by a Simple Solution Process for through Silicon via Interconnection // Electrochem. Solid-State Lett. 2011. V. 15. № 5. https://doi.org/10.1149/2.esl113678
  27. 27. Luo W. et al. Pretreatment to assure the copper filling in through-silicon vias // J. Mater. Sci.: Mater. Electron. 2016. V. 27. № 7. P. 7460–7466. https://doi.org/10.1007/s10854-016-4723-y
  28. 28. Zhang J. et al. The TSV process in the hybrid pixel detector for the High Energy Photon Source // Nucl. Instrum. Methods Phys. Res. 2020. V. 980. № 164425. https://doi.org/10.1016/j.nima.2020.164425
  29. 29. Gambino J. et al. Through-silicon-via Process Control in Manufacturing for SiGe Power Amplifiers // Proc.- Electron. Compon. Technol. Conf. 2013. P. 221. https://doi.org/10.1109/ECTC.2013.6575575
  30. 30. Yan Y. et al. Investigation of reliability and security of the 3D packaging structure // 21st International Conference on Electronic Packaging Technology. 2020. P. 1. https://doi.org/10.1109/ICEPT50128.2020.9202416
  31. 31. Djuzhev N.A. et al. Technology for Manufacturing TSV Structures for the Creation of Silicon Interposers Using Temporary-Bonding Technology // Nanobiotechnology Reports. 2024. V. 19. № 2. P. 197–207. https://doi.org/10.1134/S2635167624600408
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library