RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Torsion and circular shear coupling in nonlinear-elastic hollow cylinder

PII
S30346428S1026351925010113-1
DOI
10.7868/S3034642825010113
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
209-223
Abstract
Combined torsional and circular shear of an incompressible nonlinear-elastic right-circular hollow cylinder is studied. A solution to the problem is obtained for an arbitrary elastic potential depending on the first invariant of the left Cauchy – Green deformation tensor solely (generalized neo-Hookean solid). For the Gent material, an analytical solution in closed form is obtained. A rotary damper design based on the obtained solution is proposed. Formulas for the dissipation of kinetic energy due to friction on the cylindrical surfaces of the pipe are given. For a strain softening material, a numerical solution is obtained, which is compared with experimental results.
Keywords
нелинейная упругость кручение круговой сдвиг материал Гента поворотный демпфер
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
38

References

  1. 1. Mioduchowski A., Haddow J.B. Combined torsional and telescopic shear of a compressible hyperelastic tube // J. Appl. Mech-T Asme. 1979. V. 46. № 1. P. 223–226. https://doi.org/10.1115/1.3424509
  2. 2. Fosdick R.L., MacSithigh G. Helical shear of an elastic, circular tube with a non-convex stored energy // Arch. Ration. Mech. An. 1983. V. 84. P. 31–53. https://doi.org/10.1007/BF00251548
  3. 3. Tao L., Rajagopal K.R., Wineman A.S. Circular shearing and torsion of generalized neo-Hookean materials // IMA J. Appl. Math. 1992. V. 48. № 1. P. 23–37. https://doi.org/10.1093/imamat/48.1.23
  4. 4. Zidi M. Azimuthal shearing and torsion of a compressible hyperelastic and prestressed tube // Int. J. Nonlin. Mech. 2000. V. 35. № 2. P. 201–209. https://doi.org/10.1016/S0020-7462 (99)00008-6
  5. 5. Zidi M. Combined torsion, circular and axial shearing of a compressible hyperelastic and prestressed tube // J. Appl. Mech-T. Asme. 2000. V. 67. № 1. P. 33–40. https://doi.org/10.1115/1.321149
  6. 6. Zidi M. Finite torsion and shearing of a compressible and anisotropic tube // Int. J. Nonlin. Mech. 2000. V. 35. № 6. P. 1115–1126. https://doi.org/10.1016/S0020-7462 (99)00083-9
  7. 7. Horgan C.O., Saccomandi G. Helical shear for hardening generalized neo-Hookean elastic materials // Math. Mech. Solids. 2003. V. 8. № 5. P. 539–559. https://doi.org/10.1177/10812865030085007
  8. 8. Saravanan U., Rajagopal K.R. Inflation, extension, torsion and shearing of an inhomogeneous compressible elastic right circular annular cylinder // Math. Mech. Solids. 2005. V. 10. № 6. P. 603–650. https://doi.org/10.1177/1081286505036422
  9. 9. Жуков Б.А. Нелинейное взаимодействие конечного продольного сдвига и конечного кручения втулки из резиноподобного материала // Изв. РАН. МТТ. 2015. № 3. С. 127–135.
  10. 10. Севастьянов Г.М. Кручение с круговым сдвигом материала Муни – Ривлина // Изв. РАН. МТТ. 2020. № 2. С. 142–146. http://doi.org/10.31857/S0572329920020129
  11. 11. Rivlin R.S. Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure // Philos. Tr. Royal Soc. A. 1949. V. 242. № 845. P. 173–195. https://doi.org/10.1098/rsta.1949.0009
  12. 12. Ericksen J.L. Deformations possible in every isotropic, incompressible, perfectly elastic body // Z. Angew. Math. Phys. 1954. V. 5. № 6. P. 466–489. https://doi.org/10.1007/BF01601214
  13. 13. Knowles J.K. The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids // Int. J. Fracture. 1977. V. 13. P. 611–639. https://doi.org/10.1007/BF00017296
  14. 14. Gent A.N. A new constitutive relation for rubber // Rubber Chem. Technol. 1996. V. 69. № 1. P. 59–61. https://doi.org/10.5254/1.3538357
  15. 15. Horgan C.O., Saccomandi G. Constitutive modelling of rubber-like and biological materials with limiting chain extensibility // Math. Mech. Solids. 2002. V. 7 № 4. P. 353–371. https://doi.org/10.1177/108128028477
  16. 16. Horgan C.O., Saccomandi G. Pure azimuthal shear of isotropic, incompressible hyperelastic materials with limiting chain extensibility // Int. J. Nonlin. Mech. 2001. V. 36. № 3. P. 465–475. https://doi.org/10.1016/S0020-7462 (00)00048-2
  17. 17. Anssari-Benam A., Horgan C.O. Extension and torsion of rubber-like hollow and solid circular cylinders for incompressible isotropic hyperelastic materials with limiting chain extensibility // Eur. J. Mech. A-Solid. 2022. V. 92. P. 104443. https://doi.org/10.1016/j.euromechsol.2021.104443
  18. 18. Бегун А.С., Буренин А.А., Ковтанюк Л.В. Винтовое вязкопластическое течение в зазоре между жесткими цилиндрами // Изв. РАН. МТТ. 2017. № 6. С. 55–70
  19. 19. Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980. 512 с.
  20. 20. Зайцев В.Ф., Полянин А.Д. Справочник по дифференциальным уравнениям с частными производными первого порядка. М.: Физматлит, 2003. 416 с.
  21. 21. Kut S., Ryzińska G. Modeling elastomer compression: Exploring ten constitutive equations // Materials. 2023. V. 16. № 11. P. 4121. https://doi.org/10.3390/ma16114121
  22. 22. Mullins L., Tobin N.R. Stress softening in rubber vulcanizates. Part I. Use of a strain amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber // J. Appl. Polym. Sci. 1965. V. 9. № 9. P. 2993–3009. https://doi.org/10.1002/app.1965.070090906
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library