RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

Asymptotic method in problems of elliptic boundary layer in shells of revolution under impacts of normal type

PII
S30346428S1026351925010085-1
DOI
10.7868/S3034642825010085
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
158-169
Abstract
The asymptotic method for studying the behavior of non-stationary waves in thin shells generally involves using the separation method of solutions in the phase plane into components with different indices of variability in coordinates and time. In the case of normal type of impact, one of these components is an elliptical boundary layer occurring in a small neighborhood of the surface Rayleigh wave front. Its equations are derived by the method of asymptotic integration from the three-dimensional equations of elasticity theory. And they are partial differential equations of elliptic type with boundary conditions specified by hyperbolic equations. The article presents a general asymptotic method for solving the equations of the boundary layer under consideration in the case of the arbitrary form shell of revolution as an example. It is based on a preliminary study of basic problems for shells of revolution of zero Gaussian curvature using integral Laplace and Fourier transforms. The equations of this boundary layer for different types of normal loading have a common characteristic property: the asymptotically principal components coincide with the corresponding equations for shells of revolution of zero Gaussian curvature. This property, together with the property of different variability of the components of the stress-strain state and geometric parameters, allows, when using the method of exponential representations in the Laplace transform space, to functionally relate the solutions in the case of the arbitrary form shell of revolution with the solutions for shells of revolution of zero Gaussian curvature. The developed general approach is applied in this article to solving the problem of an elliptical boundary layer in shells of revolution under normal type loading. A numerical calculation of the shear stress for the obtained asymptotic solution in the case of a spherical shell is given.
Keywords
асимптотический метод эллиптический погранслой оболочка вращения касательное напряжение условный фронт поверхностных волн Рэлея метод экспоненциальных представлений преобразование Лапласа преобразование Фурье
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
16

References

  1. 1. Nigul U. Regions of effective application of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates // Int. J. Solid Struct. 1969. V. 5. № 6. P. 607–627.
  2. 2. Нигул У.К. Сопоставление результатов анализа переходных волновых процессов в оболочках и пластинах по теории упругости и приближенным теориям // ПММ. 1969. Т. 33. Вып. 2. С. 308–332.
  3. 3. Кириллова И.В., Коссович Л.Ю. Асимптотическая теория волновых процессов в оболочках вращения при ударных поверхностных и торцевых нормальных воздействиях // Изв. РАН. МТТ. 2022. № 2. С. 35–49. https://doi.org/10.31857/S057232992202012X
  4. 4. Kossovich L.Yu., Kirillova I.V. Transient waves in shells of revolution under normal shock loading // Topical problems in theoretical and applied mechanics. New Delhi: Elite Publishing House, LTD. 2013. P. 186–201.
  5. 5. Kirillova I.V., Kossovich L.Yu. Analysis of solutions for elliptic boundary layer in cylindrical shells at edge shock loading // Advanced Structured Materials. Recent Approaches in the Theory of Plates and Plate-Like Structures. 2022. V. 151. Chapter 11. P. 131–140. https://doi.org/10.1007/978-3-030-87185-7_11
  6. 6. Кириллова И.В. Эллиптический погранслой в оболочках вращения при ударных поверхностных воздействиях нормального типа // Изв. РАН. МТТ. 2024. № 5. С. 48–59. https://doi.org/10.31857/S1026351924050045
  7. 7. Polyanin A.D., Manzhirov A.V. // Mechanics of Solids. 2024. V. 59. № 5. P. 2686–2693.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library