RAS Energy, Mechanics & ControlИзвестия Российской академии наук. Механика твердого тела Mechanics of Solids

  • ISSN (Print) 1026-3519
  • ISSN (Online) 3034-6428

A model of diffusion annihilation of gas-filled spherical pores during hot isostatic pressing

PII
S30346428S1026351925010071-1
DOI
10.7868/S3034642825010071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
136-157
Abstract
A diffusion model of dissolution of gas-filled spherical pores in a solid during hot isostatic pressing (HIP) is proposed. It is assumed that the pore surface emits vacancies when a solid is loaded with external pressure, as a result of which the pores shrink in size. Two specific cases are considered: pores with a constant amount of insoluble gas and pores with a gas diffusively dissolving in the material surrounding the pore. In the first case, the increasing internal pressure of the gas in the pore first slows down the process of pore contraction and finally stops it completely when the internal pressure of the gas in the pore becomes equal to the sum of the externally applied HIP pressure and the Laplace pressure due to the pore surface tension. In the second case, the internal gas pressure in the pore decreases rapidly due to the dissolution of the gas in the material surrounding the pore and therefore pore contraction does not stop. When the pore reaches a sub-micron size, the pore contraction is quickly accelerated due to the increasing Laplace pressure and finally the pore annihilates.
Keywords
газонаполненные поры горячее изостатическое прессование диффузия вакансии монокристаллы никелевых жаропрочных сплавов
Date of publication
20.01.2026
Year of publication
2026
Number of purchasers
0
Views
19

References

  1. 1. Алымов М.И., Шустов В.С., Касимцев А.В., Жигунов В.В., Анкудинов А.Б., Зеленский В.А. Синтез нанопорошков карбида титана и изготовление пористых материалов на их основе // Российские нанотехнологи. 2011. Т. 6. № 1–2. С. 122–127.
  2. 2. Гнедовец А.Г., Зеленский В.А., Анкудинов А.Б., Алымов М.И. Высокопористый никель с иерархической структурой, синтезированный в процессе спекания-испарения металлического нанопорошка и порообразователя // ДАН. 2019. Т. 484. № 4. С. 64–67. https://doi.org/10.31857/S0869-56524844436-440
  3. 3. Jeon T.J., Hwang T.W., Yun, H.J. et. al. Control of porosity in parts produced by a direct laser melting process // Appl. Sci. 2018. V. 8. P. 2573. https://doi.org/10.3390/app8122573
  4. 4. Galarraga H., Lados D.A., Dehoff R.R. et. al. Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) // Additive Manufacturing. 2016. V. 10. P. 47–57. https://doi.org/10.1016/j.addma.2016.02.003
  5. 5. Епишин А.И., Алымов М.И. Определение объемной доли микропористости в монокристаллах никелевых жаропрочных сплавов // Заводская лаборатория. Диагностика материалов. 2022. Т. 88. № 11. С. 32–40. https://doi.org/10.26896/1028-6861-2022-88-ll-32-40
  6. 6. Fullagar K.P.L., Broomfield R.W., Hulands M. et. al. Aero engine test experience with CMSX-4® alloy single-crystal turbine blades // J. Eng. Gas Turbines Power. 1996. V. 118. P. 380–388. https://doi.org/10.1115/1.2816600
  7. 7. Epishin A., Fedelich B., Link T. et. al. Pore annihilation in a single-crystal nickel-base superalloy during hot isostatic pressing: Experiment and modelling // Mater. Sci. Eng. A. 2013. V. 586. P. 342–349. https://doi.org/10.1016/j.msea.2013.08.034
  8. 8. Epishin A.I., Link T., Fedelich B. et. al. Hot isostatic pressing of single-crystal nickel-base superalloys: Mechanism of pore closure and effect on mechanical properties // MATEC Web of Conf. 2014. V. 14. P. 08003. https://doi.org/10.1051/matecconf/20141408003
  9. 9. Kosonen T., Kakko K., Raitanen N. Evaluation of pore re-opening after HIP in LPBF Ti–6Al–4V // Powder Metallurgy. 2021. V. 64. № 5. P. 425–433. https://doi.org/10.1080/00325899.2021.1928997
  10. 10. Reed R.C., Cox D.C., Rae C.M.F. Damage accumulation during creep deformation of a single crystal superalloy at 1150°C // Mater. Sci. Eng. A. 2007. V. 448. № 1–2. P. 88–96. https://doi.org/10.1016/j.msea.2006.11.101
  11. 11. Морозов Е.М., Алымов М.И. Разрушающее давление в микродефектах консолидированных материалов // Докл. РАН. Химия, науки о материалах. 2021. T. 501. № 1. С. 56–58. https://doi.org/10.31857/S2686953521060091
  12. 12. Sofronis P., McMeeking R.M. Creep of power-law material containing spherical voids // J. Appl. Mech. V. 59. № 2S. P. S88–S95. https://doi.org/10.1115/1.2899512
  13. 13. Левинский Ю.В. Поведение замкнутых пор на заключительной стадии спекания // Изв. вузов. Порошковая металлургия и функциональные покрытия. 2008. № 4. С. 36–55.
  14. 14. Prasad M.R.G., Gao S., Vajragupta N., Hartmaier A. Influence of trapped gas on pore healing under hot isostatic pressing in nickel-base superalloys // Crystals. 2020. V. 10. P. 1147. https://doi.org/10.3390/cryst10121147
  15. 15. Ruffini A., Bouar Y. Le, Finel A., Epishin A.I. et.al. Dislocations interacting with a pore in an elastically anisotropic single crystal nickel-base superalloy during hot isostatic pressing // Comp. Mater.s Sci. 2022. V. 204. P. 111118. https://doi.org/10.1016/j.commatsci.2021.111118
  16. 16. Feldmann T., Fedelich B., Epishin A. Simulation of hot isostatic pressing in a single‐crystal ni base superalloy with the theory of continuously distributed dislocations combined with vacancy diffusion // Adv. Eng. Mater. 2022. V. 24. № 6. P. 2101341. https://doi.org/10.1002/adem.202101341
  17. 17. Sakai T., Iwata M. On the final stage in pressure sintering process // Jpn. J. Appl. Phys. 1976. V. 15. № 3. P. 537–542. https://doi.org/10.1143/JJAP.15.537
  18. 18. Wang H., Li Z. Diffusive shrinkage of a void within a grain of a stressed polycrystal // J. Mech. Phys. Solids. 2003. V. 51. № 5. P. 961–976. https://doi.org/10.1016/S0022-5096 (02)00039-X
  19. 19. Епишин А.И., Бокштейн Б.С., Светлов И.Л. и др. Вакансионная модель аннигиляции пор в процессе горячего изостатического прессования монокристаллов никелевых жаропрочных сплавов // Материаловедение. 2017. № 5. С. 3–12.
  20. 20. Epishin A., Camin B., Hansen L. et. al. Refinement and experimental validation of a vacancy model of pore annihilation in single-crystal nickel-base superalloys during hot isostatic pressing // Adv. Engineering Mater. 2020. V. 23. № 7. P. 2100211. https://doi.org/10.2139/ssrn.3751560
  21. 21. Compaan K., Haven Y. Correlation factors for diffusion in solids // Trans. Faraday Soc. 1956. V. 52. P. 786–801. http://doi.org/10.1039/TF9565200786
  22. 22. Brillo J., Egry I. Surface tension of nickel, copper, iron and their binary alloys // J. Mater. Sci. 2004. V. 40. P. 2213–2216. https://doi.org/10.1007/s10853-005-1935-6
  23. 23. Saaremaa E. The surface tension of solid nickel. University of British Columbia, 1957, 72 p. https://doi.org/10.14288/1.0081208
  24. 24. Двайт Г.Б. Таблицы интегралов и другие математические формулы. М.: Наука, 1973. 228 с.
  25. 25. Harris K., Erickson G.L., Sikkenga S.L. et.al. Development of two rhenium- containing superalloys for single- crystal blade and directionally solidified vane applications in advanced turbine engines // JMEP. 1993. V. 2. № 4. P. 481–487. https://doi.org/10.1007/BF02661730
  26. 26. Epishin A.I., Nolze G., Alymov M.I. Pore morphology in single crystals of a nickel-based superalloy after hot isostatic pressing // Metall. Mater. Trans. A. 2023. V. 54. № 1. P. 371–379. https://doi.org/10.1007/s11661-022-06893-x
  27. 27. Engström A., Ågren J. Assessment of diffusional mobilities in face-centered cubic Ni-Cr-Al alloys // Z. Metallkd. 1996. V. 87. № 2. P. 92–97. https://doi.org/10.1515/ijmr-1996-870205
  28. 28. Epishin A.I., Lisovenko D.S. Comparison of isothermal and adiabatic elasticity characteristics of the single crystal nickel-based superalloy CMSX-4 in the temperature range between room temperature and 1300 °C // Mech. Solids. 2023. V. 58. № 5. P. 1587–1598. https://doi.org/10.3103/S0025654423601301
  29. 29. Brückner U., Epishin A., Link T. Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys // Acta Mater. 1997. V. 45. № 12. P. 5223–5231. https://doi.org/10.1016/S1359-6454 (97)00163-8
  30. 30. Krupp U., Christ H.-J. Internal nitridation of nickel-base alloys. Part I. Behavior of binary and ternary alloys of the Ni-Cr-Al-Ti system // Oxidation of Metals. 1999. V. 52. P. 277–298. https://doi.org/10.1023/A:1018843612011
  31. 31. Wriedt H.A., Gonzalez O.D. The solubility of nitrogen in solid iron-nickel alloys near 1000 °C // Trans. AIME. 1961. V. 221. № 3. P. 532–535.
  32. 32. Fromm E., Gebhardt E. Gase und Kohlenstoff in Metallen. Berlin: Springer-Verlag, 1976. 748 p.
  33. 33. Park, J-W., Altstetter, C.J. The diffusion and solubility of oxygen in solid nickel // Metall. Trans. A. 1987. V. 18. P. 43–50. https://doi.org/10.1007/BF02646220
  34. 34. Alcock C.B., Brown P.B. Physicochemical factors in the dissolution of thoria in solid nickel // Metal Science Journal. 1969. V. 3. № 1. P. 116–120. https://doi.org/10.1179/msc.1969.3.1.116
  35. 35. Seybolt A.U. Dissertation, Yale University, New Haven, CT, 1936.
  36. 36. Хансен М., Андерко К. Структуры двойных сплавов. Т. 1, 2. М.: Металлургиздат, 1962. 1488 c.
  37. 37. David M., Prillieux A., Monceau D., Connétable D. First-principles study of the insertion and diffusion of interstitial atoms (H, C, N and O) in nickel // J. Alloys Compd. 2020. 822. P. 153555. https://doi.org/10.1016/j.jallcom.2019.153555
  38. 38. Krupp U., Christ H.-J. Internal nitridation of nickel-base alloys. Part II. Behavior of quaternary Ni-Cr-Al-Ti alloys and computer-based description // Oxidation of Metals. 1999. V. 52. P. 299–320. https://doi.org/10.1023/A:1018895628849
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library