На примере четырехмерных уравнений равновесия для кинетических напряжений в эйлеровых прямоугольных координатах показано, что оператор четырехмерного тензора деформаций Коши является сопряженным (транспонированным) к оператору уравнений равновесия. Такая же связь между операторами уравнений равновесия и тензора деформаций Коши имеет место и в трехмерном случае. Приведены три варианта вывода условий совместности деформаций Коши. В четырехмерном случае имеется 21 условие совместности, а трехмерном - шесть условий совместности Сен-Венана. Показано, что тензор деформаций Коши как в эйлеровых, так и в лагранжевых переменных полностью определяет деформированное состояние сплошной среды. При этом никаких ограничений на величину смещений, деформаций или поворотов не требуется. Тензоры Лагранжа-Грина и Эйлера-Альманси, так называемых больших или конечных деформаций, и смещения с помощью формул Чезаро выражаются через тензор деформаций Коши. Определяющие соотношения упругой сплошной среды связывают взаимно однозначно тензор истинных напряжений Коши и тензор деформаций Коши. С использованием собственных базисов в пространствах симметричных тензоров напряжений и деформаций определяющие соотношения могут быть записаны в виде шести отдельных независимых уравнений, содержащих функции только от одного аргумента. Для сплошных сред, имеющих кристаллографические симметрии, можно использовать базисы, полученные на основе обобщенного закона Гука.
На примере матрицы постоянных упругости изотропного материала показано, что модули Юнга, сдвига, объемный, коэффициент Пуассона могут принимать любые действительные значения. При этом положительная определенность матрицы постоянных упругости не является обязательной, как традиционно принято считать. Положительность удельной энергии деформации имеет место и тогда, когда матрица постоянных упругости не является положительно определенной. Достаточно для обратимости соотношений закона Гука требовать невырожденности матрицы постоянных упругости. Приведены графики модулей Юнга, объемного и коэффициента Пуассона в зависимости от отношения постоянных Ламе.
На примере четырехмерных уравнений равновесия для кинетических напряжений в эйлеровых прямоугольных координатах показано, что оператор четырехмерного тензора деформаций Коши является сопряженным (транспонированным) к оператору уравнений равновесия. Такая же связь между операторами уравнений равновесия и тензора деформаций Коши имеет место и в трехмерном случае. Приведены три варианта вывода условий совместности деформаций Коши. В четырехмерном случае имеется 21 условие совместности, а трехмерном - шесть условий совместности Сен-Венана. Показано, что тензор деформаций Коши как в эйлеровых, так и в лагранжевых переменных полностью определяет деформированное состояние сплошной среды. При этом никаких ограничений на величину смещений, деформаций или поворотов не требуется. Тензоры Лагранжа-Грина и Эйлера-Альманси, так называемых больших или конечных деформаций, и смещения с помощью формул Чезаро выражаются через тензор деформаций Коши. Определяющие соотношения упругой сплошной среды связывают взаимно однозначно тензор истинных напряжений Коши и тензор деформаций Коши. С использованием собственных базисов в пространствах симметричных тензоров напряжений и деформаций определяющие соотношения могут быть записаны в виде шести отдельных независимых уравнений, содержащих функции только от одного аргумента. Для сплошных сред, имеющих кристаллографические симметрии, можно использовать базисы, полученные на основе обобщенного закона Гука.
На примере матрицы постоянных упругости изотропного материала показано, что модули Юнга, сдвига, объемный, коэффициент Пуассона могут принимать любые действительные значения. При этом положительная определенность матрицы постоянных упругости не является обязательной, как традиционно принято считать. Положительность удельной энергии деформации имеет место и тогда, когда матрица постоянных упругости не является положительно определенной. Достаточно для обратимости соотношений закона Гука требовать невырожденности матрицы постоянных упругости. Приведены графики модулей Юнга, объемного и коэффициента Пуассона в зависимости от отношения постоянных Ламе.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации