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Сформулирована задача на условный экстремум, позволяющая опреде-
лять по второму предельному состоянию верхнюю границу допустимой 
угловой скорости вращения осесимметрично искривленного, армиро-
ванного волокнами диска. Конструкция жестко закреплена на валу 
или ступице; к внешней кромке полотна диска могут быть прикреп-
лены лопатки. Материалы компонентов композиции предполагаются 
жесткопластическими, имеющими асимметрию при растяжении и сжа-
тии; материал связующей матрицы может обладать цилиндрической ани-
зотропией. Пластическое деформирование компонентов композиции 
ассоциировано с кусочно-линейными критериями текучести. Структу-
ры армирования полотна диска обладают меридиональной симметрией. 
Использована двуслойная модель искривленного диска с плосконапря-
женным состоянием в каждом из фиктивных композитных слоев. Дис-
кретизированная поставленная задача решена симплекс-методом теории 
линейного программирования. Проведена верификация разработанного 
численного алгоритма. Проанализированы примеры численного расчета 
предельной угловой скорости вращения плоских, конических и сфери-
ческих однородных и композитных дисков при разной степени их ис-
кривления. Исследованы случаи армирования полотна диска по геоде-
зическим направлениям и по логарифмическим спиралям, а также по 
меридиональным и окружным траекториям. Сравнение проведено для 
дисков одинаковой массы при одинаковом расходе арматуры. Показано, 
что наибольшей несущей способностью обладают композитные диски с 
меридионально-окружной структурой армирования. Продемонстриро-
вано, что даже незначительное осесимметричное искривление полотна 
диска приводит к резкому уменьшению его несущей способности по 
сравнению с аналогичной плоской конструкцией.

Ключевые слова: вращающиеся диски, оболочки вращения, армирование 
волокнами, жесткопластическая модель, предельное состояние, оценка 
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1. Введение. Вращающиеся диски компрессоров высокого давления и газо-
турбинных двигателей, а также маховики (накопители механической энергии) 
являются одними из наиболее нагруженных тонкостенных элементов совре-
менных технических изделий [1–3]. И к дискам газотурбинных авиационных 
двигателей, и к маховикам предъявляются повышенные требования к умень-
шению их массы (в последнем случае для увеличения удельной энергоемко-
сти маховиков [3]), поэтому перспективным представляется изготовление их 
из композиционных материалов (КМ), которые обладают высокой удельной 
прочностью и жаростойкостью [3–6]. А значит, актуальной является пробле-
ма моделирования и расчета механического поведения вращающихся дисков, 
в том числе и из неоднородных, анизотропных и армированных материалов 
[1–3, 7–16]. Как показывают краткие обзоры, проведенные в работах [14–16], 
в подавляющей части публикаций, посвященных этой тематике, рассматри-
вается упруго-линейное деформирование таких КМ-элементов конструкций. 
Моделирование же неупругого механического поведения армированных дис-
ков на сегодняшний день находится в стадии становления. При этом, как пра-
вило, исследуются лишь диски с простейшей структурой – с армированием 
только в окружном направлении.

При проектировании конструкций разового назначения несущую способ-
ность вращающихся дисков целесообразно рассчитывать по второму предель-
ному состоянию, предполагая, что материалы дисков (или все компоненты 
их композиции) находятся в пластическом состоянии. Для оценки несущей 
способности дисков, работающих в таких условиях, их можно моделировать 
как жесткопластические [14–19]. Известно, что построить полное решение 
(особенно в аналитической форме) соответствующей задачи даже для плоских 
дисков со сложными и неоднородными структурами армирования достаточно 
сложно [14, 15]. Поэтому в работе [16] был разработан численный метод опре-
деления верхней (кинематической) границы несущей способности плоских 
вращающихся КМ-дисков переменной толщины, жесткопластическое пове-
дение материалов композиции которых ассоциировано с кусочно-линейны-
ми поверхностями текучести [17–19]. Однако в инженерной практике часто 
встречаются неплоские (искривленные) вращающиеся диски, например ко-
нической формы [1, 2, 7]. Оценка несущей способности таких вращающихся 
КМ-дисков по второму предельному состоянию с учетом разносопротивляе-
мости материалов их компонентов композиций до настоящего времени не 
проводилась.

Согласно всему вышеизложенному, данная работа посвящена разработке 
метода расчета верхней (кинематической) границы предельной угловой ско-
рости вращения неплоских (искривленных), осесимметрично армированных 
дисков из жесткопластических материалов, а также исследованию влияния 
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параметров армирования и формы меридионального их сечения на эту ско-
рость вращения.

2. Основные предположения и постановка задачи. Исходя из общей форму-
лировки рассматриваемой задачи, под полотном искривленного диска будем 
понимать тонкую незамкнутую оболочку вращения с отверстием в окрестно-
сти полюсной точки. Ось вращения z для удобства изложения сориентиру-
ем вертикально. При этом верхняя кромка оболочки имеет радиус r0, а ниж-
няя – радиус r1 (r0 < r1); высота подъема верхней кромки над нижней равна H 
(рис. 1). Толщина оболочки 2h в общем случае является переменной и зави-
сит от меридиональной координаты или, например, от радиального расстоя-
ния r от оси вращения z до рассматриваемой точки срединной поверхности: 

(б)

Рис. 1. Меридиональное сечение искривленного диска: (a) – конического с лопатками; 
(б) – эллипсоидального без лопаток.

(a)
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≤ ≤0 1r r r  (см. рис. 1). На верхней (внутренней) кромке r = r0 оболочка жестко 
соединена с недеформируемым валом (или ступицей). К нижней (внешней) 
кромке r = r1 оболочки, вращающейся вокруг оси z с постоянной угловой ско-
ростью w, могут быть приложены внешние центробежная сила Fr и распреде-
ленный изгибающий момент MO от действия прикрепленных лопаток и раз-
резной замковой части обода диска [1, 2, 7] (см. рис. 1a).

Рассматриваются оболочки двух типов.
1. Коническая усеченная оболочка (см. рис. 1a), главные радиусы кри-

визны Ri и параметры Ламе Ai (i = 1, 2) срединной поверхности которой име-
ют выражения [7, 20]:
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где a – угол конусности.
2. Оболочки, срединная поверхность которых получена вращением вокруг 

оси z некоторой плоской кривой второго порядка. Координаты точек сре-
динной поверхности таких оболочек заданы углом q между осью вращения 
z и нормалью к срединной поверхности в рассматриваемой точке. Верхняя 
(внутренняя) кромка оболочки при этом определяется значением угла q = q0, 
а  нижняя (внешняя) кромка задана значением угла q = q1: q0 ≤ q ≤ q1 < p/2 (см. 
рис. 1б). Для такого типа оболочек имеем [20, 21]:
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R R
R R A R A r R= = = ≡ = q

+b q+b q
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где R0 – значение радиусов кривизны в полюсной точке q = 0 (при этом 
R1 =R2 =R0); b – параметр, задающий форму оболочки: при -1 < b < ∞ получа-
ем эллипсоиды вращения (в частности, при b = 0 – сферу), при b = -1 – пара-
болоид, а при b < -1 – гиперболоиды вращения. Здесь и далее нижний индекс 
“1” означает меридиональное, “2” – окружное и “3” – нормальное (трансвер-
сальное) к срединной поверхности направления.

Если выполняется неравенство

	 ( )1 0 1 4,H r r- ≤ 	 (2.3)
то оболочка считается пологой [7, 20, 22]. Как правило, под искривленными 
вращающимися дисками понимают именно такие вращающиеся оболочки 
[1, 2, 7]. Если неравенство (2.3) нарушается, то оболочки считаются глубоки-
ми. В этом случае разрабатываемая теория может быть использована, напри-
мер, для расчета предельных угловых скоростей вращения армированных 
жесткопластических центрифуг. Далее для простоты изложения все рассмат-
риваемые вращающиеся оболочки (как при выполнении, так и при наруше-
нии неравенства (2.3)) условно будем называть искривленными дисками, или 
просто дисками.
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Полотно диска (непосредственно сама оболочка) осесимметрично армиро-
вано двумя семействами волокон. Обозначим через mk и yk плотности и углы 
армирования непрерывными волокнами k-го семейства (k = 1, 2). При этом 
угол армирования yk отсчитывается от меридионального направления, как 
изображено на рис. 2a, где указан угол армирования первым семейством воло-
кон y1. (Строго говоря, пропорции на рис. 2 приближенно выполняются лишь 
при соблюдении неравенства (2.3) и точно выполняются только для плоских 
дисков, когда H = 0 [14–16].)

Рассматриваются два варианта армирования:
1) спиральное армирование двумя семействами волокон из одного матери-

ала, уложенных симметрично относительно меридионального направления; 
при этом m1(r) = m2(r), y1(r) = -y2(r), r0 ≤ r ≤ r1, r    q (см. рис. 2a и б);

2) армирование в меридиональном ( m1(r), y1(r) ≡ 0) и/или окружном (m2(r), 
y2(r) ≡ p/2, r0 ≤ r ≤ r1, r    q) направлениях (см. рис. 2в), причем волокна, уло-
женные в разных направлениях, могут быть выполнены из разных материалов.

Структуры армирования по толщине тонких дисков однородны. Согласно 
традиционным технологиям изготовления, непрерывные волокна имеют по-
стоянные поперечные сечения [3–6], поэтому интенсивность армирования 
волокнами k-го семейства, осесимметрично намотанными по любым спи-
ральным траекториям, для дисков типа 1 определяется по формулам [23]:
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0 0 0 0
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а для дисков типа 2 [21, 23]:
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Здесь mk
0 > 0 – плотность армирования, заданная на внутренней (верхней) 

кромке r = r0 (или q = q0), которую можно варьировать. В случае окружной 
укладки волокон k-го семейства yk

0 = yk ≡ p/2, поэтому в правых частях первых 
соотношений (2.4) и (2.5) возникает неопределенность типа 0/0. В силу этого 

(а)

rR1

ψ1

ψ1
0

R0

(б) (в)

Рис. 2. Структуры армирования полотна диска (вид в плане): (a) – по логарифмическим 
спиралям; (б) – по геодезическим линиям; (в) – меридианально-окружное армирование.
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интенсивность армирования mk окружным семейством волокон можно зада-
вать достаточно произвольно, учитывая лишь следующие физические ограни-
чения: при любых структурах плотности армирования mi(r) (i = 1, 2) являют-
ся неотрицательными функциями и суммарная интенсивность армирования 
mS(r) в каждой точке должна быть меньше некоторого предельно допустимого 
значения mm:

( ) ( ) ( ) ( )1 2 m 0 1const 1 ( 0, 1, 2), ( ).ir r r r i r r r rSm ≡ m +m ≤ m = < m ≥ = ≤ ≤ q 	 (2.6)
В случае многонаправленного армирования на практике обычно прини-

мают mm ≈ 0.7 [24].
Материалы компонентов композиции полотна диска однородны и имеют 

разные пределы текучести при растяжении и сжатии. Армирующие волокна 
изотропны, а материал связующего в общем случае может быть ортотропным: 
оси его анизотропии совпадают с меридиональным, окружным и поперечным 
направлениями. В предельном состоянии пластическое течение в компонен-
тах композиции ассоциировано с кусочно-линейными условиями текучести, 
аналогичными модифицированным критериям текучести Треска или Илью-
шина–Ивлева [14–19, 21, 22, 25, 26].

Исследуется лишь случай осесимметричного деформирования диска в ста-
ционарном режиме вращения под действием центробежных сил, так как это 
главный этап его расчета на прочность [1–3, 7]. При необходимости возможен 
и учет влияния набегающего воздушного потока. (Наличие или отсутствие 
этого дополнительного воздействия не принципиально для разрабатывае-
мой здесь методики расчета.) Для моделирования механического поведения 
полотна диска используются традиционные гипотезы [1–3, 7]: в частности, 
предполагается, что его изгибное деформирование описывается классической 
теорией оболочек [7, 17, 20], т.е. в нем приближенно реализуется обобщенное 
плоское напряженное состояние (ПНС), в том числе неоднородное и в транс-
версальном направлении. При указанных свойствах материала связующего, 
особенностях структур армирования, нагружения, закрепления и геометрии 
вращающегося диска в нем отсутствует скручивание (относительно оси вра-
щения z), поэтому направления главных напряжений и скоростей деформа-
ций в связующем и в композиции совпадают с меридиональным, окружным 
и поперечным направлениями.

Согласно сделанным допущениям, на элемент полотна диска, вращающе-
гося с постоянной угловой скоростью w, в радиальном направлении r действу-
ет центробежная массовая сила [1, 2, 7]:

	
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 2

0 0 0
1 1

, 2 ,

, 1 ,

r r

k k k
k k

f r f r f r h r r r

r r r r r
= =

= w ≡ r

r = m r + m r m = - m∑ ∑
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где r0, rk – объемная плотность материала связующего и волокон k-го се-
мейства; r – объемная плотность композиции; m0 – относительное объемное 
содержание связующей матрицы в представительном элементе композиции. 
В случае оболочек типа 2 в соотношениях (2.7) аргументы у функций необхо-
димо заменить на q.
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Как уже отмечалось, к внешней кромке полотна диска (оболочки) прикла-
дывается равномерно распределенная по окружности r = r1 внешняя сила Fr, 
действующая в радиальном направлении r, которая порождена центробеж-
ным действием на диск прикрепленных к нему лопаток и разрезной замковой 
части обода [1, 2] (см. рис. 1a). В общем случае эти же центробежные силы 
могут порождать и изгибающий момент MO. Погонные сила Fr и момент MO 
предполагаются приложенными к внешнему контуру срединной поверхности 
полотна диска, т.е. в точке O, как изображено на рис. 1a. Величины Fr и MO 
зависят от w, формы, размеров и структуры армирования лопаток и конструк-
тивного исполнения замковой части обода диска. В первом приближении ло-
патку можно рассматривать в форме прямолинейного стержня постоянной 
толщины h* (в направлении оси вращения диска z) и длины l [1], возмож-
но, продольно армированным одним семейством волокон [14, 16]. Так как на 
элемент лопатки действует центробежная сила, аналогичная (2.7), используя 
метод сечений, можем определить радиальную силу и момент в корневом се-
чении лопатки. Поэтому в первом приближении допустимо принять [14, 16]:

	 ( )( )

2 2

2 2
0 0 2 1 0 2 1

, , ,

1
, 1 , ,

2

r r O O O r

r

F F M M M aF

F h r r r r l∗ ∗ ∗
∗ ∗ ∗ ∗

= w = w ≡ ±

≡ m r +m r - m = -m = +
	 (2.8)

где r0
*, r* – объемная плотность материалов связующего и арматуры лопатки; 

m* – интенсивность армирования лопатки; a – фиктивное плечо приложения 
силы Fr относительно точки O (выбор знака “±” в выражении для  –MO опреде-
ляется конкретным конструктивным исполнением обода диска).

Замечание. Влияние разрезной замковой части обода диска на момент MO 
можно учесть, например, за счет соответствующего выбора величины a в (2.8), 
а на силу Fr – либо за счет дополнительного слагаемого в выражении для F

–
r, 

либо за счет соответствующего формального изменения величин r0
* и r* в (2.8). 

Значения таких поправок зависят от конструктивных особенностей исполне-
ния замков. В рамках настоящего исследования учет этих поправок не прин-
ципиален, так как значения величин F

–
r и  –MO в (2.8) можно считать изначально 

заданными.
Как следует из соотношений (2.7) и (2.8), внешние силы fr, Fr и момент MO, 

действующие на полотно диска, пропорциональны w2, а значит эту величину 
можно интерпретировать как параметр нагружения исследуемой конструк-
ции. Согласно выражениям (2.7) и (2.8), при определении верхней (кинемати-
ческой) границы квадрата угловой скорости вращения w2 для коэффициентов 
f
–

r, F
–
r и  –MO выполняется условие нормирования [17]:

	 ( ) ( )( ) ( )1 1 1 1 1 3 32 1,r r O

S

r F v r M r f v f v dSp + J + + =∫∫ 	 (2.9)

где в случае оболочек типа 1 (см. рис. 1a) при учете (2.7)

	 ( ) ( ) ( ) ( )1 3 0 1sin , cos , ,r rf r f r f r f r r r r= a = a ≤ ≤ 	 (2.10)
а в случае оболочек типа 2 (см. рис. 1б)



	 ПРОГНОЗИРОВАНИЕ НЕСУЩЕЙ СПОСОБНОСТИ ИСКРИВЛЕННЫХ...� 87

	 ( ) ( ) ( ) ( )1 3 0 1cos , sin , ,r rf f f fq = q q q = q q q ≤ q ≤ q 	 (2.11)
S – площадь срединной поверхности полотна диска; n1 и n3 – кинематиче-
ски допустимая скорость перемещения точек срединной поверхности полот-
на диска (оболочки) в меридианальном и поперечном направлениях соответ-
ственно в системе координат, связанной с вращающейся конструкцией (n3 – 
скорость прогиба); nr – то же в радиальном направлении r; J – кинематически 
допустимая скорость угла поворота нормали к срединной поверхности в ме-
ридианальном направлении. (В силу отсутствия скручивания конструкции 
перемещения точек его срединной поверхности в указанной системе коорди-
нат в окружном направлении равны нулю, поэтому соответствующая скорость 
n2 ≡ 0.)

Предельное значение угловой скорости вращения диска найдем из прин-
ципа возможной мощности [17, 19], из которого следует, что для определе-
ния верхней границы несущей способности вращающегося диска необходимо 
найти минимум wm

2 параметра внешней нагрузки w2:

	
1 3 1 3

2 2

, ,
min minm
v v v v

S

DdSw = w = ∫∫ ,	 (2.12)

при условии нормирования (2.9) и выполнении ограничений-неравенств

	 ( ),
1

, 1, 2, ..., 0 ,
J

j n j
j

D Q q n N D
=

≥ = ≥∑ 	 (2.13)

где D – мощность диссипации механической энергии, отнесенная к единице 
площади срединной поверхности; Qj,n – значения j-х обобщенных напряже-
ний (например, изгибающих моментов и мембранных усилий) в n-й угловой 
точке кусочно-линейной поверхности текучести материала полотна диска;  _

N – количество угловых точек этой поверхности; qj – значение j-й обобщен-
ной скорости деформаций, сопряженной с обобщенным напряжением Qj и 
определяемой через допустимые скорости перемещений точек срединной по-
верхности оболочки n1 и n3 за счет соответствующих кинематических соотно-
шений [7, 17, 20]; J – количество обобщенных напряжений Qj и скоростей де-
формаций qj (в рассматриваемом случае осесимметричного деформирования 
полотна искривленного диска без его скручивания пространство мембранных 
усилий и изгибающих моментов имеет размерность J = 4).

Условие (2.13) формализует принцип максимума Мизеса [17–19]: мощ-
ность “ассоциированных” обобщенных напряжений Qj на соответствующих 
скоростях обобщенных деформаций qj 

	
1

J

j j
j

D Q q
=

 
≡  

 
∑

не меньше мощности любого не “ассоциированного” обобщенного напряже-
ния Qj,n на скоростях обобщенных деформаций qj.

Согласно формуле (2.13), прежде чем решать задачу об определении верх-
ней границы несущей способности вращающегося искривленного КМ-диска, 
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необходимо рассчитать кусочно-линейную поверхность текучести его компо-
зиции в обобщенных напряжениях: мембранных усилиях и изгибающих мо-
ментах. Как показано в работе [27], даже в случае цилиндрической однород-
ной, осесимметрично деформируемой оболочки из разносопротивляющего-
ся жесткопластического материала поверхность текучести в четырехмерном 
пространстве мембранных усилий и изгибающих моментов получается очень 
сложной и являются кусочно-гладкой (а не строго кусочно-линейной, как 
требует этого применение неравенства (2.13)) даже в тех случаях, когда ис-
ходная поверхность текучести материала оболочки в обычных напряжени-
ях является кусочно-линейной. Еще большие трудности возникают при по-
строении аналогичных поверхностей текучести в обобщенных напряжениях 
для тонкостенных КМ-конструкций, поэтому для решения этой проблемы в 
работе [28] была использована упрощенная – двуслойная модель армирован-
ной оболочки. Однако даже при использовании и такого упрощения поверх-
ность текучести в обобщенных напряжениях для изгибаемой КМ-оболоч-
ки получается опять же кусочно-гладкой (а не кусочно-линейной) и очень 
сложной.

Учитывая все вышесказанное, при разработке численного алгоритма реше-
ния рассматриваемой задачи на условный экстремум имеет смысл сразу ори-
ентироваться на двуслойную модель КМ-оболочки, что позволяет избежать 
построения ее сложной поверхности текучести в пространстве обобщенных 
напряжений Qj (  j = 1, J). Можно использовать и более сложную M-слойную 
модель тонкостенной конструкции (M ≥ 3). Однако расчеты, проведенные в 
работе [17], показывают, что с практической точки зрения уточнение верх-
ней границы несущей способности таких элементов конструкций при M ≥ 3 
пренебрежимо мало по сравнению со случаем M = 2, но порождает при этом 
существенные вычислительные трудности.

В рамках двуслойной модели оболочки считаем, что в трансверсальном 
направлении она состоит из двух фиктивных слоев равной толщины h, причем 
расстояние между срединными поверхностями этих слоев также равно h (см. 
рис. 1a). Наружный слой обозначим как “1”, а внутренний – “2”. При этом 
принято, что напряженное состояние в каждом слое приближенно соответ-
ствует ПНС и однородно в поперечном направлении. Тогда мощность дисси-
пации механической энергии D (см. (2.12)) равна сумме мощностей диссипа-
ций для двух рассматриваемых слоев [7, 17–22]:

	 (1) (2)

( ) ( ) 0 ( ) 0
1 1 2 21 2

,
[ ( ( 1) 2) ( ( 1) 2)], 1, 2,m m m m m

D D D
D h h h m

= +
= s x - - k + s x - - k =

	 (2.14)

где s1
(m) и s2

(m) – главные напряжения в композиции m-го слоя; x1
0 и x2

0 – ско-
рости мембранных деформаций оболочки в меридиональном и окружном 
направлениях соответственно; k1 и k2 – скорости изменения главных кри-
визн срединной поверхности полотна диска в тех же направлениях; верхний 
индекс в скобках – номер слоя. В случае конструктивного исполнения диска 
типа 1 (см. (2.1)) величины 0

1x , 0
2x , 1k , 2k  и rv , J  (см. (2.9)) выражаются 

через n1 и n3 по формулам [7, 20]:
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в случае же диска типа 2 (см. (2.2)) [20]
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′x q = q + q x q = q q+ q

′′ ′ ′k q = - q - q - q q - q

′k q = - q q - q q = b q

′q = q q+ q q J q = - q - q q ≤ q ≤ q

	(2.16)

где штрих – производная по указанному аргументу.
Таким образом, в рамках двухслойной модели задача определения верх-

ней границы предельной угловой скорости вращения искривленного диска 
типа 1 (см. (2.1), (2.7)–(2.10) и (2.12)–(2.15)) формулируется как нахождение 
минимума параметра нагрузки wm

2 по кинематически допустимым скоростям

	 ( )
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1 3
0

2 (1) (2)
m

,
min2 ( ) ( )

sin

r

v v
r

r
D r D r drw = p +

a∫ 	 (2.17)

при следующих ограничениях:
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	 (2.19)

где si,n
(m) – значение напряжения si

(m) (i = 1, 2) в n-й угловой точке кусочно-ли-
нейной кривой текучести композиции полотна диска в m-м слое при ПНС 
(эти величины определены в разд. 3); N – количество угловых точек этой кри-
вой (см. разд. 3); –f1 и; –f3 имеют выражения (2.10) при учете (2.7).

Так как полотно диска (оболочка) на внутренней кромке (r  = r0) жестко 
соединено с недеформируемыми валом или ступицей (см. рис. 1), то для ско-
ростей перемещений имеем следующие кинематические граничные условия – 
дополнительные ограничения-равенства [7, 20]:

	 ( ) ( ) ( )1 0 3 0 3 00, 0.v r v r v r= = =′ 	 (2.20)
В случае искривленного вращающегося диска типа 2 из (2.9), (2.12) и (2.13) 

при учете (2.2) вместо соотношений (2.17)–(2.19) получаем [7, 20, 21]:
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где –f1 и –f3 определяются по формулам (2.11) при учете (2.7); остальные ве-
личины имеют прежний смысл. К соотношениям (2.21)–(2.23) необходимо 
добавить граничные условия (2.20), в которых r0 нужно заменить на q0. Эти 
граничные условия при учете выражений (2.15) и (2.16) были фактически уже 
использованы при записи левых частей в равенствах (2.9), (2.18) и (2.22). Со-
отношения же (2.19) и (2.23) эквивалентны неравенствам (2.13).

3. Кривые текучести композиций армированных слоев при ПНС. Для опре-
деления значений осредненных напряжений s1,

(m)
n  и s2,

(m)
n  (m = 1, 2, 1 ≤ n ≤ N) в со-

отношениях (2.19) и (2.23) необходимо предварительно построить кривые 
текучести композиции армированного полотна диска (оболочки). Согласно 
используемой двуслойной модели оболочки, в каждом из ее фиктивных сло-
ев приближенно реализуется ПНС, однородное в поперечном направлении, 
причем, как уже подчеркивалось выше, напряжения в меридиональном и 
окружном направлениях (в связующем материале и в композиции) являются 
главными для рассматриваемых типов нагружения и закрепления вращающе-
гося диска, а также его вариантов армирования.

В силу однородности структур армирования по толщине полотна диска 
в обоих его фиктивных слоях кривые текучести композиции совпадают. На 
основании этого далее в настоящем разделе (в отличие от (2.19) и (2.23)) не 
будем указывать верхний индекс (m), соответствующий номеру слоя.

В случаях, когда кривые текучести всех материалов композиции при ПНС 
кусочно-линейны (рис. 3), кривые текучести армированного материала мож-
но рассчитать по структурным формулам из работы [29]. Однако расчетная 
кусочно-линейная кривая текучести композиции задается при этом пара-
метрически в неявном виде. Это порождает определенные (хотя и не прин-
ципиальные) трудности вычисления координат ее угловых точек. Поэтому 
воспользуемся упрощенным вариантом структурной модели из [29], который 
позволяет получить координаты угловых точек на кривой текучести компо-
зиции в явном виде [21, 22]. Так как материал связующей матрицы по пред-
положению может обладать цилиндрической анизотропией, обозначим через 
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sm
±

j > 0 его пределы текучести при растяжении (+) и сжатии (–) в меридио-
нальном (  j = 1) и окружном (  j = 2) направлениях. При этом считаем, что ку-
сочно-линейная кривая текучести ABCDEF связующего материала при ПНС 
соответствует модифицированному критерию Треска [26] (см. рис. 3); в случае 

1 2m m
+ +s = s  и 1 2m m

- -s = s  получаем критерий текучести Ху [25] для изотропного 
материала связующего, по-разному сопротивляющегося растяжению и сжа-
тию, а при 1 2 1 2m m m m

+ + - -s = s = s = s  – критерий текучести Треска [17–19]. Пределы 
же текучести изотропного материала волокон k-го семейства при растяжении 
и сжатии обозначим s+

[k] и s–
[k] соответственно (s±

[k] > 0, k = 1, 2).
Первый вариант армирования. Как уже отмечалось выше, в этом случае (см. 

рис. 2a и б) имеем y2 = –y1, m2 = m1 и s±
[2] = s±

[1]. Кривая текучести композиции 
при такой структуре армирования представляет собой восьмиугольник (N = 8 
ABCDEFGH (см. рис. 4б в [22]), вершины которого имеют следующие коор-
динаты [21, 22]:

	
1 1,1 1 1 2 2,1 2 2

1 1,2 1 2 2,2 2 2

1 1,3 1 2 2,3 2 2 2 1 2 1

1 1,3 1 1 2 2,3 2 2 1 2 1

: , ,

: , ,

, ( ),
:

, ( ),

f m f m

f f m

f f m f f m m

f m f f f m m

A

B

C

+ + + +

+ + +

- - + + - + -

+ - + + - + -

s ≡ s = s + s s ≡ s = s + s

s ≡ s = s s ≡ s = s + s

s ≡ s = -s s ≡ s = -s + s s s ≤ s s

s ≡ s = s -s s ≡s = s s s > s s

A

FC

D
E

B

σm1
+σm1

–

σm2
–

σm2
+

σ1

σ2

Рис. 3. Кривая текучести материала связующего полотна диска.
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	 1 1,4 1 1 2 2,4 2

1 1,5 1 1 2 2,5 2 2

1 1,6 1 2 2,6 2 2

1 1,7 1 2 2,7 2 2 2 1 2 1

1 1,7 1 1 2 2,7 2 2

: , ,

: , ,

: , ,

, ( ),
:

, (

f m f

f m f m

f f m

f f m f f m m

f m f f

D

E

F

G

- - -

- - - -

- - -

+ + - + - - +

- + - +

s ≡ s = -s -s s ≡ s = -s

s ≡ s = -s -s s ≡ s = -s -s

s ≡s = -s s ≡ s = -s -s

s ≡ s = s s ≡ s = s -s s s ≤ s s

s ≡ s = -s + s s ≡ s = -s s s 1 2 1

1 1,8 1 1 2 2,8 2

),

: , ,

f m m

f m fH

- - +

+ + +




> s s

s ≡ s = s + s s ≡ s = s

	 (3.1)

где

	 ( )2 2
[1] 1 1 1 1 11 1 12 12 , 1 2 ( 1, 2), cos , sin ;fj j mj j mjl l j l l± ± ± ±s ≡ s m s ≡ - m s = = y = y 	 (3.2)

плотность армирования m1 задается соотношением (2.4) или (2.5) при k = 1.
Второй вариант армирования. Согласно результатам работы [22], в слу-

чае меридионально-окружной структуры армирования полотна диска (см. 
рис. 2в) кривая текучести композиции представляют собой шестиугольник 
(N = 6) ABCDEF (см. рис. 4a в [22]), вершины которого имеют координаты [22]:

	

1 1,1 1 1 2 2,1 2 2

1 1,2 1 2 2,2 2 2

1 1,3 1 1 2 2,3 2

1 1,4 1 1 2 2,4 2 2

1 1,5 1 2 2,5 2 2

1 1,6 1 1

: , ,

: , ,

: , ,

: , ,

: , ,

: ,

f m f m

f f m

f m f

f m f m

f f m

f m

A

B

C

D

E

F

+ + + +

- + +

- - +

- - - -

+ - -

+ +

s ≡ s = s + s s ≡ s = s + s
s ≡ s = -s s ≡ s = s + s
s ≡ s = -s -s s ≡ s = s

s ≡ s = -s -s s ≡s = -s -s
s ≡ s = s s ≡ s = -s -s
s ≡ s = s + s 2 2,6 2,f

-s ≡ s = -s

	 (3.3)

где
	 m m f [ ](1 ) , , 1, 2,j j j j j j j± ± ± ±s ≡ -m s s ≡ s m = 	 (3.4)

интенсивность армирования m1 определяется по формуле (2.4) или (2.5) при 
учете y1 ≡ 0 (k = 1), а функцию m2 можно задавать достаточно произвольно, 
лишь удовлетворяя неравенствам (2.6); пределы текучести волокон разных 
семейств могут быть различны (s±

[2] ≠ s±
[1]).

Таким образом, выражения (3.1) и (3.3) при учете соотношений (2.4)–
(2.6), (3.2) и (3.4) в явном виде определяют значения напряжений s1,n и s2,n 
(1 ≤ n ≤ N) в неравенствах (2.19) и (2.23) для двух рассматриваемых вариантов 
армирования полотна диска. Согласно формулам (3.2) и (3.4), значения s1,n 
и s2,n зависят от параметров армирования yk и mk (k = 1, 2), поэтому в случа-
ях неоднородных структур армирования (что, как правило, и имеет место на 
практике) кривые текучести композиции будут различны в тех точках КМ-
конструкции, в которых параметры армирования различаются.

4. Численные примеры и анализ результатов расчетов. Минимизация функ-
ционала (2.17) (или (2.21)) при ограничениях (2.18)–(2.20) (или (2.20), (2.22) 
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и (2.23)) с учетом соотношений (3.1)‒(3.4) выполнена численно методами 
линейного программирования. Для этого сформулированная экстремаль-
ная задача предварительно была дискретизирована. А именно: на отрезке 
r ∈ [r0, r1] (или q ∈ [q0, q1]) вводилась равномерная сетка с шагом D = (r1 – r0)/
(L – 1) (или D = (q1 – q0)/(L – 1)), где L – количество узлов сетки. Интегралы в 
соотношениях (2.17) и (2.18) (или (2.21) и (2.22)) приближенно вычислялись 
с использованием формулы трапеций; производные по радиусу r (или углу 
q) в формулах (2.18)–(2.20) (или (2.20), (2.22) и (2.23)) заменялись их конеч-
но-разностными аналогами на трехточечном шаблоне, а вторые производные 
v3″ в неравенствах (2.19) (или (2.23)) в крайних узлах сетки с номерами 1 и L 
аппроксимировались скошенными конечными разностями на четырехточеч-
ных шаблонах [30]. Производные v3′ и v3″ во внутренних узлах сетки аппрокси-
мировались центральными конечными разностями. Для корректного же пре-
дельного перехода от искривленных дисков к плоским (см. рис. 1 и (2.1) при 
H → 0 ), согласно результатам работы [16], для аппроксимации производной v1′ 
в (2.19) (или (2.23)) во всех узлах сетки необходимо использовать скошенные 
конечные разности на трехточечном шаблоне. Такая дискретизация позволяет 
аппроксимировать сформулированную в разд. 2 задачу со вторым порядком 
точности по шагу D. Дискретизированная экстремальная задача (2.17)–(2.20) 
(или (2.20)–(2.23)) при учете выражений (3.1)–(3.4), как и в работе [16], ре-
шалась численно симплекс-методом Данцига [31].
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Рис. 4. Зависимость предельной угловой скорости вращения w [рад/с] от угла армирова-
ния y1

0 [рад] на внутренней кромке полотна диска.
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Далее рассматриваются конические диски – типа 1 (см. (2.1) и рис. 1a) – 
и сферические диски – типа 2 (см. (2.2) при b = 0), для которых справедливы 
выражения (см. рис. 1б) [22]

	
2 2 2

2 2 1 0
1 2 0 1 const, const.

2
r r H

R R R r b b
H

- -
= = = + = = = 	 (4.1)

Как и в работах [14, 16], эти диски имеют характерные размеры r0 = 5 см, 
r1 = 19.75 см [1] и разную величину H, а лопатки – длину l = 11.4 см [1] и тол-
щину h* = 5 мм (см. формулы (2.8)). Полотно диска (оболочка) может быть 
однородно и изготовлено из изотропного магниевого сплава МА2 (s+

m1 = s+
m2 = 

= 151 МПа, s–
m1 = s–

m2 = 113 МПа и r0 = 1740 кг/м3 [6, 32]) или из стали марки 
35ХГСНА (s+

m1 = s+
m2 = 1554 МПа, s–

m1 = s–
m2 = 1754 МПа и r0 = 7800 кг/м3 [6, 32]), 

а также композитным, состоящим из магниевого связующего (сплава мар-
ки МА2) и усиленным двумя семействами углеродных волокон Торнел-400 
(s+

[k] = s–
[k] = 2750 МПа и rk = 1780 кг/м3, k = 1, 2 [4, 6]). Лопатки же изготовлены 

из магниевого сплава МА2 и продольно армированы углеродными волокна-
ми Торнел-400 с интенсивностью армирования m* = 0.6 (см. (2.8)). Согласно 
замечанию, для учета влияния разрезной замковой части обода диска в соот-
ношениях (2.8) объемная плотность связующего лопатки искусственно увели-
чена и принята равной r0

* = 2700 кг/м3 (а не r0
* = 1740 кг/м3, как указано выше). 

Конструктивное исполнение разрезной замковой части обода предполагается 
таким, что MO = 0 (см. рис. 1a), т.е. в формулах (2.8) принято a = 0.

В работе [14] аналитически было получено полное решение рассматрива-
емой задачи для плоских вращающихся дисков при втором варианте их ар-
мирования. В работе же [16] была продемонстрирована сходимость числен-
ного решения к аналитическому для таких плоских дисков. Предварительные 
расчеты, выполненные по формулам настоящего исследования для предель-
ных случаев, когда в выражениях (2.1) и (4.1) H → 0, т.е. когда искривленные 
диски вырождаются в плоские, показали, что предельные угловые скорости 
вращения искривленных дисков в этих вырожденных случаях с точностью 
порядка 1% совпадают с результатами, полученными в [16]. Наблюдаемое 
при этом незначительное различие результатов объясняется, по-видимому, 
накоплением ошибок округления. Действительно, в [16] использовалась мо-
дель однослойных, а не двуслойных дисков, в предельном состоянии которых 
от нуля отличалась только радиальная скорость v1 (v3 ≡ 0). В настоящем же ис-
следовании используется двуслойная модель диска (см. (2.14)), поэтому в его 
предельном состоянии от нуля отличны обе скорости v1 и v3. Следовательно, 
согласно формулам данной работы, даже в предельных случаях (H → 0) ко-
личество неизвестных при одинаковой степени дискретизации задачи (при 
одинаковых значениях L) здесь в два раза больше, чем в [16], а значит, раз-
мер матрицы симплекс-метода в 4 раза больше, чем в [16]. Вычислительные 
ошибки, накапливаемые в процессе реализации метода Данцига [31] для та-
кой большой матрицы, и приводят к незначительному различию результатов, 
полученных по формулам работы [16] и по формулам настоящего исследо-
вания в предельных случаях, когда H → 0. Следует отметить, что при таком 
сравнении в соотношениях (3.1) принималось a = p/2 (H = 0), а в равенствах 
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(4.1) задавалось H = 10–7 r1. В последнем случае, строго говоря, H ≠ 0, что также 
является причиной некоторого различия обсуждаемых выше результатов для 
искривленных дисков сферической формы.

Хорошее совпадение значений предельных угловых скоростей вращения 
искривленных дисков, полученных в предельном случае (H → 0), с аналогич-
ными величинами, определенными в работах [14, 16], позволяет доверительно 
относиться к обсуждаемым ниже результатам расчетов дисков конической и 
сферической формы.

Далее в настоящем исследовании, как и в работе [16], рассматривают-
ся диски постоянной толщины (2h = const). Толщина полотна однородного 
изотропного плоского диска (H = 0) из магниевого сплава МА2 принимает-
ся равной 2h = 8 мм. Масса полотна такого диска (me = 1.596 кг)) считается 
эталонной. Толщину полотна 2h дисков из других материалов (в том числе и 
композитных) будем задавать так, чтобы их масса m, вычисляемая по формуле

	 ( )0 d f 1 1 2 2,m V V V V= r - + r + r 	 (4.2)
была равна эталонной (m = me). Здесь r0 и rk определены в (2.7); Vk (k = 1, 2)– 
объем арматуры k-го семейства; Vd – объем диска; Vf – общий объем арматуры 
в диске, определяемый так:
	 1 2,fV V V= + 	 (4.3)
где в случае диска типа 1

	 ( )
1 1

0 0

2 2 ( ) , 2 2 ( ) , 1, 2,
sin sin

r r

d k k
r r

r r
V h r dr V h r r dr k= p = p m =

a a∫ ∫ 	 (4.4)

а в случае диска типа 2

	
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

0 0

1 2 1 22 2 sin , 2 2 sin ,

1, 2.

d k kV h R R d V h R R d

k

q q

q q

= p q q q q q = p q m q q q q q

=

∫ ∫
 (4.5)

Рассмотрим далее влияние параметров армирования (углов yk и плотностей 
mk, k = 1, 2) на предельное значение угловой скорости вращения КМ-дисков.

4.1. Влияние углового армирования при фиксированном расходе волокон. Вна-
чале исследуем частный случай спирального армирования – армирование по 
геодезическим (в случае плоского диска – по прямолинейным) траекториям 
(см. рис. 2б), так как этот тип армирования наиболее просто реализуется тех-
нологически [24, 33]. При этом в осесимметричном случае углы армирования 
yk(r) определяются по формуле Клеро [34]:

	 ( ) 0
0 0 1sin sin const 0, 1, 2, ,k kr r r k r r ry = y = > = ≤ ≤ 	 (4.6)

где угол yk
0 определен в (2.4) и (2.5). В случае диска типа 2 в равенстве (4.6) 

радиус r необходимо выразить через угол q по последней формуле (2.2).
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Согласно соотношениям (2.4) (или (2.5)) при учете (4.6), плотность ар-
мирования mk при такой укладке волокон монотонно убывает при возраста-
нии r, оставаясь положительной при yk

0 > 0 (k = 1, 2). В случае задания m1
0 = m2

0 и 
y1

0 = -y2
0 из (2.4) (или (2.5)) и (4.6) получаем m1 ≡ m2 и y1 ≡ -y2. Так как плотно-

сти армирования mk при этом являются убывающими положительными функ-
циями, то выполнение физического ограничения (2.6) достаточно проверять 
только на внутренней кромке полотна диска (оболочки) r = r0 или q = q0.

Для плоского диска (H = 0) с рассматриваемой структурой армирования 
при углах y1

0 = -y2
0 = p/4 – ортогональное армирование в окрестности вну-

тренней кромки r = r0 (именно этот случай изображен на рис. 2б) – примем 
m1

0 = m2
0 = 0.35. При этом выполняется физическое ограничение (2.6) во всех 

точках диска с предельным значением mm = 0.7. Относительный объем арма-
туры в таком плоском диске W ≡ Vf /Vd = 0.2155 (см. (4.3) и (4.4)). Как и в работе 
[16], это значение далее примем за эталонное (We = 0.2155). Будем варьировать 
углы армирования y1

0 = -y2
0 в КМ-дисках в пределах y1

0 ∈ [0, p/4], а плотности 
армирования m1

0 = m2
0 при разных y1

0 будем задавать так, чтобы относительный 
объем арматуры W, определенный с учетом соотношений (2.4), (2.5) и (4.3)–
(4.6), был равен эталонному значению (W = We). Таким образом, далее срав-
нивается несущая способность вращающихся КМ-дисков, имеющих одина-
ковую массу m = me (см. (4.2)) при одинаковом расходе арматуры (W = We). Для 
дисков с армированием по геодезическим траекториям (см. (4.6) и рис. 2б) 
углы армирования в диапазоне y1

0 ∈ (p/4, p/2) не рассматриваются, так как при 
этом нарушается физическое ограничение (2.6) при требовании выполнения 
условия W = We.

На рис. 4 изображены значения предельных угловых скоростей вращения 
дисков w в зависимости от угла армирования y1

0 на внутренних кромках r = r0 
или q = q0. (На рис. 4–7 кривые, номера которых помечены штрихом, рассчи-
таны при учете наличия лопаток на внешней кромке (см. (2.8) и рис. 1a), а 
кривые с теми же номерами, но без штриха, получены при тех же условиях, но 
при отсутствии лопаток (см. рис. 1б): при –Fr = 0 в (2.8), (2.18) и (2.22).) Сплош-
ные кривые с нечетными номерами на рис. 4 рассчитаны для рассматривае-
мого случая армирования дисков по геодезическим траекториям (см. рис. 2б). 
Кривые 1 и 1′ получены для плоских дисков (H = 0); кривые 3 и 3′ – для ко-
нических дисков при H = 5 мм (см. (2.1) и рис. 1a); кривые 5 и 5′ – для сфе-
рических дисков также при H = 5 мм (см. (4.1) и рис. 1б). Согласно неравен-
ству (2.3), полотно таких искривленных дисков – весьма пологие оболочки. 
Все указанные кривые монотонно убывают, поэтому из всех рассматривае-
мых структур армирования по геодезическим линиям наибольшую несущую 
способность обеспечивает армирование по меридиональным направлениям 
(y1

0 = -y2
0 = 0). Однако, как видно, эти кривые имеют малую изменяемость 

(особенно кривые 1′, 3, 3′, 5 и 5′), поэтому варьирование углов армирования 
y1

0 = -y2
0 незначительно влияет на изменение несущей способности дисков 

с рассматриваемым типом структуры армирования. Кривые 3 и 5 лежат суще-
ственно ниже кривой 1, аналогично кривые 3′ и 5′ лежат существенно ниже 
кривой 1′. Следовательно, даже незначительное искривление полотна диска 
(в данном случае H/(r1 – r0) = 0.034  << 1/4 (см. (2.3)) приводит к значительному 
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уменьшению его предельной угловой скорости вращения при армировании 
по геодезическим траекториям.

Рассмотрим другой вид армирования – армирование по логарифмическим 
спиралям: y1 = -y2 = y1

0 (см. рис. 2a), тогда для диска типа 1 постоянной тол-
щины из (2.4) следует выражение:

	 ( ) 0
0 0 1, 1, 2, ,k kr r r k r r rm = m = ≤ ≤ 	 (4.7)

а для диска типа 2 из (2.5) при учете (4.1) получаем:

	 0
0 0 1( ) sin sin , 1, 2, .k k k rm q = m q q = q ≤ ≤ q 	 (4.8)

Из формул (4.7) и (4.8) видно, что плотности армирования mk не зависят от 
углов yk

0 и монотонно убывают по r или q (при q1 ≤ p/2). При m1
0 = m2

0 из (4.7) и 
(4.8) получаем m1 = m2. Следовательно, при расположении арматуры по лога-
рифмическим спиралям и фиксированных значениях m1

0 = m2
0 при любых углах 

армирования y1
0 ∈ [0, p/2] общий расход волокон одинаков. Чтобы относи-

тельный объем арматуры в плоском диске был равен эталонному значению, 
следует задать m1

0 = m2
0 = 0.2667. В случае слабо искривленных дисков (пологих 

оболочек) для m1
0 = m2

0 приближенно можно принять это же значение.
Зависимости предельной скорости вращения w КМ-дисков со структурой 

армирования по логарифмическим спиралям от угла армирования y1
0 изоб-

ражены на рис. 4 штриховыми линиями и имеют четные номера. Кривые 2 
и 2′, как и линии 1 и 1′, рассчитаны для плоских дисков; кривые 4 и 4′, как и 
линии 3 и 3′, – для конических дисков (H = 5 мм); кривые 6 и 6′, как и линии 
5 и 5′, – для сферических дисков (H = 5 мм). Левые участки сплошных кри-
вых и штриховых линий с номерами, на единицу большими, чем у сплошных, 
визуально почти не различаются, а при y1

0 = 0 (меридиональное армирование) 
совпадают. Все штриховые кривые ведут себя немонотонно и имеют значи-
тельную изменяемость по сравнению со сплошными линиями (за исключени-
ем кривой 2). Так, на кривой 2 локальный максимум достигается при y1

0 ≈ p/8, 
на кривой 2′ – при y1

0 ≈ p/10, на кривой 4 – при y1
0 ≈ 17p/40, а на кривой 4′ – 

при  y1
0 ≈ 3p/10. Следовательно, наибольшую несущую способность плоским 

и коническим КМ-дискам обеспечивают именно спиральные структуры ар-
мирования. Правый участок кривой 4 лежит незначительно ниже кривой 2, 
т.е. при углах армирования по логарифмическим спиралям y1

0 ≥ 1.2 рад замена 
плоского диска без лопаток на аналогичный конический диск (по крайней 
мере, при H = 5 мм) не приводит к значительному уменьшению его предель-
ной угловой скорости вращения.

Поведение кривых 4, 4′, 6 и 6′ на рис. 4 свидетельствует о том, что несу-
щая способность искривленных вращающихся дисков существенно зависит от 
угла армирования по логарифмическим спиралям. Аналогичный вывод спра-
ведлив и для плоских КМ-дисков с лопатками (см. кривую 2′).

Кривые 1′–6′ рис. 4 лежат существенно ниже кривых 1–6 соответствен-
но. Следовательно, наличие лопаток приводит к значительному уменьше-
нию предельной угловой скорости вращения плоских и искривленных дис-
ков, армированных как по геодезическим линиям, так и по логарифмическим 
спиралям.
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4.2. Влияние плотностей армирования при фиксированных углах укладки воло-
кон. Исследуем влияние плотностей армирования mk на значение предельной 
угловой скорости вращения КМ-дисков при фиксированных углах армиро-
вания yk (k = 1, 2) в случае меридионально-окружной структуры (см. рис. 2в). 
В рассматриваемом осесимметричном случае армирование в меридиональном 
и окружном направлениях совпадает с армированием по направлениям глав-
ных напряжений и скоростей деформаций в композиции. Такие структуры ар-
мирования традиционно принято считать рациональными [24]. Первое (k = 1) 
семейство волокон укладывается в меридиональном направлении (y1 ≡ 0), 
плотность армирования m1 которого при 2h = const вычисляется по формуле 
(4.7) или (4.8). Второе (k = 2) семейство волокон наматывается в окружном 
направлении (y2 ≡ p/2). Его плотность армирования m2 является произвольной 
функцией радиуса r или угла q, если при этом выполняются ограничения (2.6).

Пусть s – длина дуги меридиана срединной поверхности, тогда для дисков 
типа 1 (конических) имеем (см. рис. 1a):

	 ( ) 0 1, ,
sin

r
s s r r r r≡ = ≤ ≤

a 	 (4.9)

а для дисков типа 2 (см. рис. 1б)

	 ( ) ( )1 0 1

0

, .s s R d
q

≡ q = τ τ q ≤ q ≤ q∫ 	 (4.10)

В частности, для сферического диска радиуса R0 из (4.10) при учете (4.1) 
получаем:

	 ( ) 0 0 1, .s s R≡ q = q q ≤ q ≤ q 	 (4.11)
Для определенности считаем, что плотность армирования m2 линейно за-

висит от координаты s:

	
( )

( ) ( ) ( ) ( )

1 00 1
2 2 2 0 1

1 0 1 0

0 1
0 0 1 1 2 2 0 2 2 1

( ),

, , , ( ).

s s s s
s s s s

s s s s

s s r s s r s s r

- -
m = m + m ≤ ≤

- -

≡ ≡ m ≡ m m ≡ m q

	 (4.12)

С целью дальнейшего обоснованного сравнения меридианально-окружно-
го армирования со спиральным предполагаем, что условие одинакового отно-
сительного расхода арматуры имеет вид (см. (4.3)):

	 f 1 2
e

d d
0.2155.

V V V
V V

+
≡ = W = 	 (4.13)

Для рассматриваемых конструкций 2h = const, поэтому из (4.4) при учете 
(4.7), (4.9) и (4.12) для конических дисков получаем:

	 ( ) ( )2 2 00
d 1 0 1 1 0 1

42
, ,

sin sin
hrh

V r r V r r
pp

= - = - m
a a

	 (4.14)
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	 ( ) ( ) ( )
0 11 0

3 3 2 22 1 2 02 2
2 1 0 1 0

1 0

4
,

3 2sin

r rh
V r r r r

r r

 m - mm - mp
= - + - 

- a   
	 (4.15)

а в случае сферического диска, согласно (4.5), (4.8), (4.11) и (4.12), имеем:

	 ( )2 2 0
0 1 0 0 1 0 1 0 14 , 4 sin , cos cos ,dV hR A V hR A= p = p q q - q m ≡ q - q 	 (4.16)

  ( ) ( ) ( )
2

0 1 1 00
2 1 2 0 2 2 2 1 0 1 0

1 0

4
, sin sin .

hR
V A B B A

p  = q m - q m + m -m ≡ q - q + q - q q - q
	(4.17)

Из равенства (4.15) для конического диска следует выражение

	 ( )13 3 2 2 3 3 2 2
2 1 01 01 0 1 0 1 0 1 0

2 0 1 2

sin
,

3 2 4 3 2

V r rr r r r r r r r
r r

h

-     - a- - - -
m = - + - m       p     

	(4.18)

где, согласно (4.13) и (4.14), справедлива зависимость

	 ( ) ( ) ( )0 2 2 0
2 2 1 1 0 0 1 0 1

2
2 .

sin e
h

V V r r r r r
p  ≡ m = W - - - m a

	 (4.19)

Аналогично в случае сферического диска из (4.17) получаем:

	 ( ) ( )2 1 01 0
2 1 22

0 0

1
,

4

V
B A

B A hR

 q - q
m = + - q m 

- q p  
	 (4.20)

где, используя равенства (4.13) и (4.16), следует учесть, что

	 ( ) ( )0 2 0
2 2 1 0 0 1 0 12 sin .eV V hR A ≡ m = p W - q q - q m  	 (4.21)

В соотношении (4.18) (или (4.20)) при учете (4.19) (или (4.21)) и извест-
ном значении We (см. (4.13)) параметры m1

0 и m2
0 можно варьировать, получая, 

согласно (4.7) и (4.9), (4.12) (или (4.8) и (4.11), (4.12)), разные распределения 
плотностей армирования. При этом необходимо учитывать ограничения (2.6) 
и m1

0 ≥ 0, m2
0 ≥ 0 и m2

1 ≥ 0.
Толщина 2h = const дисков с меридионально-окружной структурой ар-

мирования выбиралась такой же, как и в случае армирования по логарифми-
ческим спиралям. Это обеспечивает одинаковую массу сравниваемым дискам 
и одинаковый общий расход арматуры в них.

На рис. 5 изображены зависимости w(m2
0), рассчитанные при некоторых 

значениях m1
0 для плоских дисков (рис. 5a), конических дисков при H = 5 мм 

(рис. 5б) и сферических дисков также при H = 5 мм (рис. 5в) с меридиональ-
но-окружными структурами армирования. Кривые 1 и 1′ на рис. 5 получены 
при m1

0 = 0 (окружное армирование), кривые 2 и 2′ – при m1
0 = 0.15, кривые 3 

и 3′ – при m1
0 = 0.25, кривые 4 и 4′ – при m1

0 = 0.35. Кривые 2–4 и 2′–4′ соот-
ветствуют меридионально-окружным структурам армирования с разным рас-
пределением плотностей армирования mk(r) или mk(q) (k = 1, 2). Линии 1′–4′ 
на рис. 5a визуально практически не отличаются от горизонтальных прямых. 
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Наименьшие значения ординат точек на этих кривых отличаются от наи-
больших значений (при m2

0 = 0) менее чем на 1%.
Правые точки на всех кривых являются предельными, так как при соот-

ветствующих значениях m1
0 и m2

0 по формуле (4.18) или (4.20) с учетом (4.19) 
или (4.21) получается m2

1 = 0. Дальнейшее увеличение значения m2
0 при фикси-

рованном m1
0 приводит к m2

1 < 0, что противоречит физическим ограничениям 
(2.6).

Поведение кривых на рис. 5 (за исключением кривых 1′–4′ на рис. 5a) 
свидетельствует о том, что в случае меридионально-окружного армирования 
зависимость предельно допустимой угловой скорости вращения w рассмат-
риваемых дисков от плотностей армирования на внутренней кромке m1

0 и m2
0 

является достаточно сложной. Однако видно, что

	 ( ) ( )
0 0 0
1 2 1

0 0 0
1 2 1

,
max , max , 0
m m m

w m m = w m 	 (4.22)

(см. кривые 1 и 4′ на рис. 5a, кривые 1 и 2′ на рис. 5б и кривую 4′ на рис. 5в) 
или
	 ( ) ( )

0 0 0
1 2 1

0 0 0
1 2 1

,
max , max , 0
m m m

w m m ≈ w m 	 (4.23)

(см. кривую 4 на рис. 5c).
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Рис. 5. Предельная угловая скорость вращения w [рад/с] дисков с меридионально-окруж-
ной структурой армирования в зависимости от m2

0 (плотности окружного армирования при 
r = r0 или q = q0): (a) – плоский диск; (б) – конический диск (H = 5 мм); (в) – сферический 
диск (H = 5 мм).
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Таким образом, согласно соотношениям (4.22) и (4.23), максимальное зна-
чение зависимости w(m1

0, 0) позволяет определить максимальную (или близкую 
к ней) угловую скорость вращения дисков на всем множестве рассматрива-
емых структур армирования с меридионально-окружной укладкой волокон. 
Поэтому на рис. 6 изображены зависимости w(m1

0), полученные на основании 
(4.22) и (4.23) при m2

0 = 0. Кривые 1 и 1′ соответствуют плоскому диску, кри-
вые 2 и 2′ – коническому диску, кривые 3 и 3′ – сферическому диску. Правым 
точкам всех кривых на рис. 6 (m1

0 ≈ 0.533) соответствует вырожденный случай – 
меридианальное армирование полотна дисков (m1 ≠ 0 и m2 ≡ 0). При m1

0 > 0.533 
относительный объем арматуры в дисках W будет превышать эталонное зна-
чение We (см. (4.13)), если дополнительно потребовать m2 ≡ 0, либо, согласно 
(4.18) и (4.19) (или (4.20) и (4.21)) при соблюдении условия (4.13), получает-
ся m2

1 < 0, что недопустимо в силу выполнения физических неравенств (2.6). 
Поэтому на интервале 0.533 < m1

0 ≤ 0.7 = mm кривые на рис. 6 не изображены.
Абсциссы точек максимумов на кривых рис. 6 определяют рациональные 

параметры m1
0 и m2

0 = 0 меридионально-окружного армирования соответствую-
щих дисков, при которых несущая способность рассматриваемых конструк-
ций является наибольшей или близка к ней (последнее относится к кривой 3 
на рис. 6). Кривые 1 и 2 на рис. 6 являются убывающими, т.е. их максимум 
достигается при m1

0 = 0. Поэтому для плоских и конических (по крайней мере 
при H = 5 мм) дисков без лопаток рациональной является окружная структура 
армирования с распределением плотности армирования m2(s), определяемой 
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Рис. 6. Предельная угловая скорость вращения w [рад/с] дисков с меридионально-окруж-
ной структурой армирования при m2

0 = 0 в зависимости от m1
0 (m1

0 и m2
0 плотности армирова-

ния меридиональным и окружным семействами волокон при r = r0 или q = q0).
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по формуле (4.12) при учете (4.18), (4.19) и m2
0 = 0 (в случае плоского диска 

a = p/2).
Ординаты точек максимумов на кривых 1 и 1′ на рис. 6 больше ординат 

аналогичных точек на кривых 1, 2 и 1′, 2′ на рис. 4 (плоские диски); ординаты 
таких же точек на кривых 2 и 2′ на рис. 6 также больше ординат точек мак-
симумов на кривых 3, 4 и 3′, 4′ на рис. 4 (конические диски); аналогично, и 
ординаты точек максимумов на кривых 3 и 3′ на рис. 6 больше ординат таких 
же точек на кривых 5, 6 и 5′, 6′ на рис. 4 (сферические диски). Следователь-
но, диски с меридионально-окружной структурой армирования (рис. 6) при 
рациональных значениях параметров армирования m1

0 и m2
0 имеют большую 

предельную угловую скорость вращения, чем диски с рассмотренными спи-
ральными структурами армирования (рис. 4) той же массы и с тем же расхо-
дом арматуры.

Ординаты точек максимумов на кривых 2, 3 и 2′, 3′ на рис. 6 (искривлен-
ные диски) меньше ординат точек на кривых 1 и 1′ (плоские диски). А зна-
чит, несущая способность искривленных дисков с меридионально-окружной 
структурой армирования, как и в случае спирального армирования, меньше, 
чем у плоских дисков.

4.3. Влияние степени искривления вращающихся дисков на их несущую способ-
ность. Выше рассматривались конические и сферические диски с малой сте-
пенью искривленности (H = 5 мм, H/(r1 – r0) ≈ 0.034 << 1/4 (см. (2.3)), т.е. весьма 
пологие оболочки. Как видно из предыдущего, даже столь малое искривление 
полотна вращающегося диска может приводить к значительному уменьше-
нию его несущей способности. В связи с этим целесообразно проследить за 
изменением предельной угловой скорости вращения искривленных дисков в 
зависимости от изменения величины H (см. рис. 1).

На рис. 7 изображены указанные зависимости w(H) для дисков с мериди-
онально-окружной структурой армирования при эталонном значении отно-
сительного расхода арматуры W = We = 0.2155 (рис. 7a) и при W = 0.7 (рис. 7б), 
а также для изотропных однородных дисков (рис. 7в). Кривые 1, 1′, 3 и 3′ на 
рис. 7 соответствуют коническим дискам (см. (2.1) и рис. 1a), кривые 2 и 2′ – 
сферическим дискам (см. (2.2) и (4.1)). Кривые 1 и 2 на рис. 7a рассчитаны 
при m2

0 = 0 и тех значениях m1
0, при которых на кривых 2 и 3 на рис. 6, соответ-

ственно, достигается максимум. Аналогично, кривые 1′ и 2′ на рис. 7a полу-
чены при m2

0 = 0 и таких значениях m1
0, при которых на кривых 2′ и 3′ на рис. 6, 

соответственно, реализуется максимум. Ординаты точек кривых 1, 2 и 1′, 2′ на 
рис. 7a при H = 0 (плоские диски) различаются, потому что кривые 1, 1′ и 2, 2′ 
рассчитаны при разных структурах армирования.

До сих пор в данной работе исследовалось предельное состояние вращаю-
щихся дисков с фиксированным относительным объемом арматуры W в них, 
равным эталонному значению We (см. (4.13)). Рассмотрим теперь КМ-диски, 
в которых это условие не используется. Структура армирования дисков по-
прежнему предполагается меридионально-окружной. Плотность армирования 
меридиональным семейством m1 задается формулой (4.7) или (4.8) при k = 1, а 
плотность армирования окружным семейством определяется соотношением:

	 ( ) ( )0
2 1 1 0 1, ( ).r r r r r rm = m - m ≤ ≤ q 	 (4.24)



104	 Янковский

1700

1200

2200

2700

3700

3200

4700

4200

0 2 31 4
H

ω
(а)

6800

5800

4800

3800

2800

1800
0 2 31 4 H

ω
(б)



	 ПРОГНОЗИРОВАНИЕ НЕСУЩЕЙ СПОСОБНОСТИ ИСКРИВЛЕННЫХ...� 105

При этом суммарная плотность армирования

	 ( ) ( ) 0
1 2 1 0 1, ( )r r r r r rSm ≡ m + m = m ≤ ≤ q 	 (4.25)

постоянна и равна m1
0 (см. (4.7) или (4.8)). При m1

0 = 0 получается изотропный 
диск из сплава МА2. Для каждого значения m1

0 ∈ [0, 0.7] постоянная толщина 
полотна диска 2h по-прежнему задается такой, чтобы масса КМ-диска была 
равна эталонному значению me = 1.596 кг (см. начало разд. 4).

Предварительные расчеты показали, что при выполнении равенств (4.24) 
и (4.25) зависимости w(m1

0) для всех рассматриваемых дисков (плоских, кони-
ческих и сферических; с лопатками и без лопаток) являются монотонно воз-
растающими, поэтому наибольшей несущей способностью обладают диски с 
рассматриваемыми структурами армирования при m1

0 = mm = 0.7. В связи с этим 
на рис. 7б изображены зависимости w(H), рассчитанные для таких КМ-дисков 
именно при значении m1

0 = 0.7. В отличие от рис. 7a, на рис. 7б ординаты точек 
кривых 1, 2 и 1′, 2′ при H = 0 (плоские диски) совпадают, так как рассчитаны 
при одних и тех же структурах армирования (см. (4.24) и (4.25) при m1

0 = 0.7). 
Кривые 1′ на рис. 7a и 1′, 2′ на рис. 7б ведут себя немонотонно, остальные же 
кривые на рис. 7 монотонно убывают. Это означает, что в случае коническо-
го диска с лопатками при эталонном относительном расходе арматуры W = We 

700

1200

1700

2700

2200

3700

3200

0 2 31 4
H

ω

(в)

Рис. 7. Предельная угловая скорость вращения дисков w [рад/с] в зависимости от осевого 
расстояния между внутренней и внешней кромками полотна диска H [см]: (a) – КМ-дис-
ки с меридионально-окружной структурой при эталонном значении относительного рас-
хода арматуры (W = We = 0.2155); (б) – КМ-диски с меридионально-окружной структурой 
при значении относительного расхода арматуры W = 0.7; (в) – однородные изотропные 
диски.
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(кривая 1′ на рис. 7a), а также в случаях конического и сферического дис-
ков с лопатками при относительном расходе волокон W = 0.7 (кривые 1′ и 2′ 
на рис. 7б) за счет незначительного искривления полотна КМ-дисков можно 
увеличить их предельную угловую скорость вращения по сравнению с анало-
гичными плоскими дисками (ср. ординаты точек максимумов на указанных 
кривых с ординатами точек при H = 0).

Кривые, изображенные на рис. 7б, лежат существенно выше аналогич-
ных кривых, изображенных на рис. 7a. Следовательно, для достижения наи-
большего допустимого значения угловой скорости вращения КМ-дисков их 
целесообразно армировать по меридионально-окружным направлениям с ис-
пользованием формул (4.24) и (4.25) при учете (4.7) или (4.8) и m1

0 = mm. Одна-
ко при этом в дисках со структурами армирования, обладающими свойства-
ми (4.24) и (4.25), при m1

0 = 0.7 относительное объемное содержание волокон 
при W = 0.7, что в 3.25 раза больше, чем в КМ-дисках с эталонным значением 
W = We (см. (4.13)).

На рис. 7в для сравнения изображены зависимости w(H), рассчитанные 
для изотропных однородных дисков. Кривые 1, 1′ и 2, 2′ получены для ко-
нических и сферических дисков из стали марки 3ХГСНА, а кривые 3 и 3′ – 
для конических дисков из магниевого сплава МА2. Аналогичные кривые для 
сферических магниевых дисков на рис. 7в не изображены, чтобы его не за-
громождать. Значения w(H) для них меньше, чем для конических дисков (см. 
кривые 3 и 3′).

Сравнение ординат точек кривых 3 и 3′ на рис. 7в с ординатами точек кри-
вых 1 и 1′ на рис. 7a и б свидетельствует о том, что армирование магниевых 
дисков приводит к существенному увеличению их предельной угловой ско-
рости вращения при одинаковой массе. Подобное сравнение кривых 1, 1′ и 
2, 2′ на рис. 7в с такими же кривыми на рис. 7a и б показывает, что вращаю-
щиеся КМ-диски могут иметь существенно большую несущую способность, 
чем аналогичные диски той же массы, но изготовленные из высокопрочной 
стали. Таким образом, использование вращающихся КМ-дисков действитель-
но представляется вполне перспективным.

Кривые 2 и 2′ на рис. 7 почти всюду лежат ниже кривых 1 и 1′ (исключение 
составляют лишь левые участки кривых 1′ и 2′ на рис. 7a). Следовательно, при 
одних и тех же значениях параметра H (см. рис. 1) сферические вращающие-
ся однородные и КМ-диски, как правило, имеют меньшую несущую способ-
ность, чем конические диски той же массы.

В целом поведение кривых на рис. 7 свидетельствует о том, что искрив-
ление полотна диска (особенно по сферической форме) приводит к значи-
тельному уменьшению его несущей способности по сравнению с плоскими 
вращающимися дисками той же массы и с теми же структурами армирования.

В предельном состоянии плоских дисков скорость прогиба v3 ≡ 0, а ско-
рость смещения точек в радиальном направлении v1(r) характеризуется зави-
симостями, изображенными на рис. 3 в работе [16]. В настоящем исследова-
нии рассмотрены те же самые плоские диски, что и в [16], поэтому не будем 
здесь повторять рис. 3 из [16]. Пластическое течение в предельном состоянии 
искривленных дисков характеризуется наличием обеих зависимостей v1(r) и 
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v3(r), которые для некоторых случаев изображены на рис. 8. Сплошные кри-
вые на рис. 8 соответствуют зависимостям v3(r), а штриховые кривые, номера 
которых помечены штрихом, соответствуют зависимостям v1(r), рассчитан-
ным при тех же условиях, что и сплошные кривые с теми же номерами. Все 
кривые на рис. 8 нормированы так, чтобы для каждого рассматриваемого слу-
чая выполнялось условие 3max ( ) 1 м с.

r
v r =

Кривые 1 и 1′ на рис. 8 получены для сферического диска (H = 5 мм) без 
лопаток при меридиональной структуре армирования (см. рис. 2б при y1

0  = 0). 
В подавляющем большинстве проведенных расчетов в предельном состоянии 
вращающихся дисков (особенно с лопатками) зависимости v3(r) и v1(r) полу-
чаются качественно аналогичными кривым 1 и 1′. Однако встречаются слу-
чаи, когда эти зависимости являются более сложными. Например, кривые 2 
и 2′ на рис. 8 также соответствуют сферическому диску (H = 5 мм) без лопа-
ток, но с окружной структурой армирования (см. (4.8), (4.11), (4.12), (4.20) и 
(4.21) при m1

0 = m2
0 = 0). Во многих расчетных случаях в предельном состоянии 

вращающихся дисков в окрестности внутренней кромки (r = r0) полотно дис-
ка остается абсолютно жестким, а пластическое течение развивается только 
в окрестности внешней кромки r = r1. Кривые 3 и 3′ на рис. 8 соответству-
ют именно такому случаю и рассчитаны для конического стального диска 
(H = 50 мм) без лопаток. Поведение кривых 1, 1′, 2 и 2′ в окрестности точки 
r = r0 = 5 см свидетельствует о том, что в предельном состоянии соответству-
ющих вращающихся дисков в окрестности внутренней кромки напряженное 
состояние близко к пластическому шарниру. В большинстве случаев, когда в 
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Рис. 8. Скорости v1 и v3 [м/с] точек срединной поверхности полотна диска в его предель-
ном состоянии в зависимости от расстояния до оси вращения r [см].
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окрестности внутренней кромки появляется абсолютно жесткая подобласть, 
аналогичное напряженное состояние возникает и в окрестности границы раз-
дела жесткой и пластической подобластей. Однако встречаются и исключе-
ния. Так, поведение кривых 3 и 3′ на рис. 8 свидетельствует о том, что в соот-
ветствующем случае на границе раздела жесткой и пластической подобластей 
стального диска пластический шарнир не образуется. Напротив, в некоторых 
случаях в предельном состоянии искривленного вращающегося диска мо-
жет возникнуть несколько пластических шарниров. Об этом свидетельствует, 
например, поведение кривых 4 и 4′ на рис. 8 (см. точки изломов на кривой 4), 
которые рассчитаны для сферического стального диска (H = 50 мм) без лопа-
ток. Кривые 1, 1′, 2 и 2′ на рис. 8 получены для весьма пологих сферических 
оболочек (H = 5 мм), поэтому ординаты точек кривых 1′ и 2′ пренебрежимо 
малы по сравнению с ординатами точек кривых 1 и 2. Кривые 4 и 4′ получе-
ны для глубокой сферической оболочки (H = 50 мм), поэтому ординаты точек 
кривой 4′ (зависимость v1(r)) по модулю уже сопоставимы с ординатами точек 
кривой 4 (зависимость v3(r)).

В некоторых случаях, например, для конического диска (H = 5  мм) с 
лопатками при окружной структуре армирования (см. (4.7), (4.9), (4.12), 
(4.18) и (4.19) при m1

0 = 0 и 0 ≤ m2
0 ≤ 0.2) в предельном состоянии пластиче-

ское течение развивается в очень узкой зоне в окрестности внешней кромки 
(19.749 ≤ r ≤ r1 = 19.75). При этом в зоне пластического течения v3(r) ≡ 0, а зави-
симость v1(r) имеет вид, аналогичный кривой 1 на рис. 3б в [16], поэтому здесь 
не приводится.

В работе [16] было показано, что в случае фиксированного (эталонно-
го) расхода волокон (см. (4.13)) в плоских вращающихся дисках с лопатка-
ми целесообразно армировать не все полотно (r0 ≤ r ≤ r1), а только внешнюю 
кольцевую подобласть, примыкающую к внешнему контуру (r* ≤ r ≤ r1, r0 < r* ). 
При этом следует использовать радиально-окружную структуру армирования 
(см. рис. 1г в [16]), обладающую свойствам (4.24) и (4.25) при учете (4.7) и 
m1

0 = mm = 0.7, где m1
0 = m1(r*). Такой тип армирования обеспечивает наибольшую 

угловую скорость вращения плоских дисков с лопатками. Проведенные до-
полнительные расчеты показали, что в случае искривленных вращающихся 
дисков с лопатками указанный вариант армирования является неэффектив-
ным, так как несущая способность таких дисков оказывается меньше, чем у 
дисков с меридионально-окружной структурой армирования, рассмотренных 
выше в настоящем исследовании (см. рис. 6 и 7a). Объясняется это тем, что в 
искривленных дисках с лопатками при обсуждаемом варианте армирования 
в предельном состоянии неармированная область (r0 ≤ r ≤ r*) в основном оста-
ется абсолютно жесткой, а пластическое течение развивается в армирован-
ной области (r* ≤ r ≤ r1) и в малой ее окрестности в неармированной подобласти 
(r ≈ r*, r < r*), в которой появляется пластический шарнир. Пластическое тече-
ние при этом развивается по схеме типа “усеченный конус”, т.е. зависимости 
v1(r) и v3(r) качественно аналогичны кривым 1 и 1′ на рис. 8, но начинают от-
личаться от нуля не при r = r0 = 5 см, а при r ≤ r* ≤ r0. Соответствующие кривые 
на рис. 8 не изображены, чтобы его не загромождать. Так как пластический 
шарнир при этом образуется в неармированной зоне, то его вклад в общую 
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диссипацию механической энергии мал. Мала при этом и протяженность пла-
стически деформируемой армированной подобласти (r* ≤ r ≤ r1). Оба эти об-
стоятельства объясняют малое значение диссипации механической энергии 
(см. (2.14)) в искривленных дисках с таким вариантом армирования и, как 
следствие, низкую их несущую способность по сравнению с КМ-дисками, в 
которых армировано все полотно (r0 ≤ r ≤ r1).

Заключение. Численно решена задача об определении верхних предельных 
значений угловых скоростей вращения плоских и искривленных (конических 
и эллипсоидальных) композитных дисков с лопатками из жесткопластических 
материалов при их квазистационарных режимах вращения. Полотно дисков 
армировано по меридианальным и (или) окружным или спирально-симмет-
ричным траекториям. Материалы композиции имеют разные пределы теку-
чести при растяжении и сжатии, а материал связующего является ортотроп-
ным. Главные оси анизотропии связующего совпадают с меридиональным (в 
частности, радиальным), окружным и поперечным направлениями. Механи-
ческое поведение композиции описывается соотношениями структурной мо-
дели, учитывающей двумерное напряженное состояние во всех компонентах 
композиции. Для искривленных дисков использована двуслойная модель обо-
лочек. Для решения задачи сформулирован экстремальный принцип и разра-
ботан нетрадиционный метод его дискретизации. Численное решение разыс-
кивается с использованием методов линейного программирования. Прове-
дена верификация разработанного численного метода в предельном случае, 
когда искривленные диски вырождаются в плоские, для которых в работе [14] 
получено полное аналитическое решение.

Исследовано влияние параметров армирования на предельное значение 
угловой скорости вращения дисков при расположении арматуры по геоде-
зическим линиям, по логарифмическим спиралям и по меридиональным и/
или окружным траекториям. Проведенные расчеты показали, что при условии 
одинакового относительного объема арматуры и одинаковой массы дисков их 
несущая способность существенно зависит от параметров армирования (плот-
ностей и углов армирования) и от геометрии срединной поверхности полотна 
искривленных дисков. Исключение составляют только диски фиксированной 
геометрии при армировании их по геодезическим траекториям и плоские дис-
ки без лопаток при армировании их по логарифмическим спиралям.

При укладке волокон по геодезическим линиям наибольшее значение пре-
дельной угловой скорости вращения имеют диски, армированные по мериди-
ональным направлениям или близким к ним. При армировании конических 
дисков по логарифмическим спиралям наибольшую угловую скорость вра-
щения могут иметь конструкции со спиральным армированием, существенно 
отличным от меридионального. Значительно большую несущую способность 
имеют диски с меридионально-окружной структурой армирования.

Показано, что в случае искривленных дисков наибольшую предельную уг-
ловую скорость вращения имеют диски с меридионально-окружной структу-
рой армирования, в которой суммарная плотность армирования постоянна (не 
зависит от меридиональной координаты) и равна предельно допустимому зна-
чению. Дополнительно повысить несущую способность таких вращающихся 
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дисков можно за счет их рационального профилирования (рационального из-
менения толщины вдоль меридиональной координаты).

Продемонстрировано, что при некоторых структурах армирования в пре-
дельном состоянии в окрестности внутренней кромки полотна диска может 
появиться абсолютно жесткая армированная подобласть.

Показано, что рациональное армирование дисков позволяет значительно 
увеличить их предельную угловую скорость вращения по сравнению даже с 
высокопрочными стальными дисками той же геометрии и массы.

Работа выполнена в рамках госзадания (№ госрегистрации 124021400036-7).
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PREDICTION OF THE LOAD-BEARING CAPACITY OF CURVED 
ROTATING REINFORCED DISCS MADE OF RIGID-PLASTIC 

VARIOUS-RESISTANCE MATERIALS

A. P. Yankovskiia, *
aKhristianovich Institute of theoretical and applied mechanics  

the Siberian Branch of the RAS, Novosibirsk, Russia

*E-mail: yankovsky_ap@itam.nsc.ru

A problem on a conditional extremum is formulated, which allows one to deter-
mine, based on the second limiting state, the upper limit of the maximum angular 
velocity of rotation of an axisymmetrically curved, fiber-reinforced disk. The struc-
ture is rigidly fixed to the vase or hub; blades can be attached to the outer edge of 
the disc blade. The materials of the components of the composition are assumed 
to be rigid-plastic, having asymmetry under tension and compression; the material 
of the binding matrix may have cylindrical anisotropy. Plastic deformation of the 
components of the composition is associated with piecewise linear yield criteria. 
The reinforcement structures of the disc web have meridional symmetry. A two-
layer model of a curved disk with a plane-stress state in each of the fictitious com-
posite layers is used. The discretized problem is solved using the simplex method of 
linear programming theory. The developed numerical algorithm has been verified. 
Examples of numerical calculation of the maximum angular velocity of rotation 
of flat, conical and spherical homogeneous and composite disks with different de-
grees of their curvature are analyzed. The cases of reinforcement of the disk web 
along geodetic directions and logarithmic spirals, as well as along meridional and 
circular trajectories, were investigated. The comparison was carried out for disks 
of the same mass with the same consumption of reinforcement. It has been shown 
that composite disks with a meridional-circumferential reinforcement structure 
have the highest load-bearing capacity. It has been demonstrated that even a slight 
axisymmetric curvature of the disk web leads to a sharp decrease in its load-bearing 
capacity compared to a similar flat structure.

Keywords: rotating disks, shells of revolution, fiber reinforcement, rigid-plastic 
model, limit state, upper bound for bearing capacity, piecewise linear yield 
criteria, different resistance, anisotropy, numerical solution, simplex-method of 
linear programming
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