
 

Известия Российской академии наук. Механика ТВЕРДОГО ТЕЛА 2025, 

№ 3,  с.  270–288

УДК 538.911

ТЕРМОСТОЙКИЕ ПОКРЫТИЯ НА ОСНОВЕ КАРБИДА 
КРЕМНИЯ НА ГРАФИТЕ

© 2025 г. В . В. Антиповa, С. С. Галкинb, А. С. Гращенкоc, 
Д. М . К лимовb, А.  Ф. К олесниковb, С. А . Кукушкинc, *,  

А. В. Осиповc, А. В. Редьковc, Е. С. Тептееваb, А. В. Чаплыгинb

aСанкт-Петербургский государственный технологический институт  
(Технический университет), Санкт-Петербург, Россия

bИнститут проблем механики им. А.Ю. Ишлинского РАН, Москва
cИнститут Проблем Машиноведения РАН, Санкт-Петербург, Россия

*E-mail: sergey.a.kukushkin@gmail.com

Поступила в редакцию 31.12.2024 г. 
После доработки 04.01.2025 г. 

Принята к публикации 04.01.2025 г

В работе предложен и исследован метод формирования термостойких 
покрытий из карбида кремния на графитовых изделиях. Покрытие фор-
мируется путем одновременного протекания нескольких химических 
реакций между расплавом кремния, монооксидом углерода и припо-
верхностной области графита при температурах, незначительно превы-
шающих температуру плавления кремния. Сформированное покрытие 
имеет толщину до нескольких миллиметров, обладает высокой механи-
ческой прочностью и твердостью. Образцы исследованы различными 
методами, включая рамановскую спектроскопию, СЭМ. Исследована 
термическая стойкость полученных покрытий путем испытаний в высо-
коэнтальпийных дозвуковых потоках воздуха. Показано, что покрытия 
выдерживают такое воздействие при температурах до 1750°С в течение 
30 мин. Выявлены механизмы самовосстановления покрытия под воз-
действием кислорода при высокой температуре.
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1. Введение. В условиях, когда требования к материалам в аэрокосми-
ческой, энергетической и металлургической промышленности постоянно 
растут, все более актуален поиск материалов, способных выдерживать экс-
тремальные температуры и сохранять свои механические свойства. В этих 
отраслях одним из ключевых материалов является графит [1, 2], который 
широко доступен, выдерживает большие температуры, легок в обработке. 
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Вместе с тем графит обладает и рядом недостатков, связанных с хрупкостью 
[2], химической реактивностью и др. В связи с этим разработка новых методов 
нанесения различных защитных покрытий на поверхность графита является 
весьма актуальной задачей [3–7]. Одним из перспективных материалов для 
покрытия является карбид кремния (SiC), который обладает рядом уникаль-
ных физико-химических свойств, такими как: высокая термическая стабиль-
ность, низкий коэффициент теплового расширения, высокая твердость и от-
личная устойчивость к окислению [8]. Однако, несмотря на эти преимуще-
ства, синтез покрытий на основе SiC на поверхности графита очень сложен 
с технологической точки зрения, что ограничивает его широкое применение 
в промышленности. Одной из основных проблем является обеспечение ад-
гезии покрытия SiC к графиту. Не менее важным аспектом является мини-
мизация дефектов в покрытии, таких как трещины и поры, которые могут 
негативно сказаться на его эксплуатационных характеристиках при высоких 
температурах, особенно при высокотемпературном воздействии при темпера-
турах до 1700°C и выше.

Отметим, что покрытия SiC на графите могут быть получены различными 
методами, включая технологию плазменного напыления при низком давле-
нии [9], химическое осаждение из паровой фазы (CVD) [10] и иные подхо-
ды [11]. Окуни и др. [12] использовали плазменное спекание для такого оса-
ждения и получили композитные слои SiC-графита толщиной в сотни ми-
крон при температурах 1900–2000°C. Ли и др. [13] изучали взаимодействие 
расплавленной массы кремния с углеродом. Они показали, что поддержание 
этого взаимодействия в диапазоне температур 1500–1900°C приводит к об-
разованию слоев SiC толщиной до 60 мкм за счет инфильтрации графитовой 
матрицы кремнием и его последующего превращения в карбид. Характерное 
время отжига в ходе эксперимента составляло 1–4 ч. В другом исследовании 
[14] для формирования карбидного покрытия на графите использовался пред-
варительно нанесенный порошок, содержащий кремний и SiC. Авторы по-
казали, что за 2 ч синтеза при температуре 1700°C можно получить композит 
толщиной до 200–300 мкм. Большое внимание также уделяется синтезу угле-
родных и кремниевых нанопроволок и волокон, полностью состоящих или 
покрытых слоем SiC [15–17]. Например, Хайбо и др. [18] получили SiC-по-
крытия на углеродных волокнах путем нанесения пиролитического графита, 
а затем отжига в атмосфере SiO.

В цикле работ [19, 20] авторами был предложен новый перспективный ме-
тод нанесения, позволяющий получать более толстые покрытия с большей 
скоростью. Идея данного метода возникла на основе метода самосогласован-
ного замещения атомов (MCSA) [21–24] и основывалась на использовании 
реакции (1.1) для получения SiC:
	 ( ) ( ) ( ) ( )      CO gas 2Si solid SiC solid SiO gas .+ = + 	 (1.1)

Суть идеи заключалась в том, что на поверхность изделия, например из-
делия из графита, наносится слой кремния, а затем при отжиге в атмосфе-
ре CO он превращается в SiC. Однако при практическом использовании 
данного метода выявлены его существенные недостатки. Метод MCSA был 
разработан для получения высокосовершенных слоев SiC на кремниевой, 
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монокристаллической подложке. При покрытии кремнием (Si) изделий слож-
ной формы из графита кремний на их поверхности будет осаждаться в виде 
поликристаллической фазы. После проведения реакции (1.1) и усадки, про-
текающей в ходе реакции, весь образующийся SiC может легко отслоится, 
покрытие будет пористым и не сплошным.

Метод MCSA позволяет получать сплошной эпитаксиальный слой SiC на 
подложке Si, причем между подложкой и слоем SiC находится ансамбль пор. 
Созданный таким образом тонкий (как правило, толщины слоев, полученных 
методом MCSA, лежат в области 20–100 нм [21–24]) слой SiC имеет хоро-
шие перспективы для использования в области микроэлектроники. Однако 
он не подходит для получения прочного и термостойкого покрытия. Для со-
здания термостойкого покрытия нужен более толстый слой SiC, который был 
бы прочно связан с поверхностью графита и составлял с ним единое целое. 
Поэтому при синтезе подобного материала был использован модифициро-
ванный метод MCSA. Этот метод был разработан в работе [19]. Он является 
естественным развитием метода MCSA. При использовании метода [19] вме-
сто кремниевой пластины используется расплав кремния. Для этого графит 
покрывается кремнием (например, напыляется толстый слой кремния или 
графит обкладывается кремниевыми пластинами и т.п). Данная система до-
водится до температуры плавления Si (1412°С). В момент достижения тем-
пературой значения 1412ºС в систему подается газ CO и начинается реакция 
(1.1). Благодаря тому, что кремний расплавляется, он хорошо заполняет поры 
и пустоты в графите. Образуясь внутри графита, часть газа SiO, являющегося 
продуктом реакции (1.1), уходит не наружу, а внутрь графита. Этот газ взаи-
модействует с углеродом, результате чего протекает реакция (1.2):
	 ( ) ( ) ( ) ( )      SiO gas 2C solid SiC solid CO gas .+ = + 	 (1.2)

В процессе протекания реакции (1.2), дополнительно к образованию кар-
бида кремния на поверхности графита, образующегося по реакции (1.1), кар-
бид кремния образуется и внутри графита. Газ CO, выделяющийся в результа-
те реакции (1.2), взаимодействует с оставшимся внутри графита кремнием, не 
успевшим прореагировать в результате реакции (1.1). Это приводит к тому, 
что весь или почти весь кремний превращается в карбид кремния. В ре-
зультате внутри графита формируется сеть “корней” и дендритов SiC, уходя-
щая вглубь графита, обеспечивающая надежную связь покрывающего сверху 
графит слоя SiC с графитовой матрицей, которая находится внутри прочной, 
сплошной корки из карбида кремния. Дендриты SiC, образующиеся внутри 
графита, на микроскопическом уровне усиливают и адгезию слоя SiC [19].

Для конкретного использования в технике, различного рода технологиях и 
в качестве других приложений для любого вновь созданного материала требу-
ется знать его свойства и параметры. Если механические прочностные свой-
ства разработанного нами материала на основе карбида кремния и графита 
были исследованы ранее [19, 20], то его термостойкость требует отдельного 
рассмотрения. Таким образом, целью настоящей работы является исследова-
ние термостойкости покрытий из карбида кремния на поверхности графита, 
полученных методом [19].
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2. Методика синтеза и измерений образцов. Для проведения эксперимен-
тов использованы образцы из графита марки МПГ-7 диаметром 40 мм. Для 
нанесения слоя SiC на лицевую сторону образцов использована следующая 
процедура [19, 20]. На образце перед синтезом была расположена стандарт-
ная кремниевая пластина толщиной 600 мкм. Далее образцы графита были 
нагреты в реакторе до температуры 1470°С для получения расплава кремния 
на поверхности. При нагреве в камеру реактора подавался газ моноксид угле-
рода (CO) с расходом в 10–20 стандартных литров в час. В процессе синтеза 
в камере поддерживалось давление 1.35–2.5 мбар. В этих условиях образцы 
отжигались в течение 3–5 мин. В результате после остужения на поверхности 
образцов сформировался слой SiC.

Для исследования термической стойкости полученных образцов матери-
ала был использован высокочастотный индукционный плазмотрон ВГУ-4 
(Институт проблем механики им. А.Ю. Ишлинского РАН, г. Москва [25]), 
позволяющий реализовать необходимые высокотемпературные режимы дан-
ного типа [26–28] и имеющий следующие параметры: частота ВЧ-генерато-
ра – 1.76 МГц, анодная мощность – 12–76 кВт, давление в барокамере 6 – 
1000 гПа, диаметр разрядного канала – 80 мм, расход рабочих газов (воздух, 
N2, O2, CO2, Ar, органические газы и смеси этих газов) – 1.8– 6 г/с, энтальпия 
на оси потока 4 – 55 МДж/кг. Плазмотрон может работать в дозвуковых и 
сверхзвуковых режимах с коническими звуковыми соплами с диаметром вы-
ходных сечений 50, 40, 30, 16 мм и со щелевыми соплами с размерами выход-
ных сечений 80 × 16, 120 × 9 и 40 × 8 мм. Реализуемые тепловые потоки могут 
изменяться в пределах от 5 до 2500 Вт/см2. На этой установке полученные 
образцы испытывались в дозвуковых потоках высокоэнтальпийного воздуха 
при различных условиях.

Испытания проводились в двух режимах: 1) ступенчатого нагрева; 2) по-
стоянной температуры. Во всех экспериментах давление в барокамере уста-
новки составляло 50 гПа. В процессе испытаний использовались термови-
зор “Тандем VS-415U”, пирометр спектрального отношения Mikron M770S, 
датчики давления “Элемер АИР-20ДА/М2”, датчики плазмотрона ВГУ-4, а 
также весы ВЛ-124В. Термовизор использовался для регистрации поля темпе-
ратур на лицевой поверхности образцов и обнаружения в процессе испытания 
возможного появления зон локального перегрева, трещин и очагов разруше-
ния. Помимо этого, для исследования излучательных свойств образцов при 
нормальных условиях (комнатной температуре), до и после воздействия до-
звукового потока высокоэнтальпийного воздуха были использованы рефлек-
тометры Surface Optics ET100 и 410-Solar. Рефлектометр ET100 служил для 
измерения коэффициента теплового излучения поверхности в спектральном 
диапазоне от 1.9 до 21 мкм и позволил оценить коэффициенты полусфериче-
ского теплового излучения eH и коэффициенты направленного излучения под 
углами 20 и 60° (e20 и e60 соответственно). Рефлектометр 410-Solar использо-
вался для измерения коэффициента отражения поверхностей в спектральном 
диапазоне от 0.33 до 2.5 мкм. На основе полученных значений коэффициен-
та отражения рассчитывался коэффициент полного поглощения солнечного 
излучения и коэффициент поглощения солнечного излучения в зеркальном 
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направлении (at и atic соответственно) с поправками на учет спектра солнеч-
ного излучения.

Для определения параметров сформированного покрытия до и после воз-
действия образцы были исследованы методами рамановской спектроскопии 
с помощью конфокального рамановского микроскопа Witec Alpha 300R, ска-
нирующей электронной микроскопии на установке Zeiss Auriga Laser.

3. Результаты и обсуждение. Режимы испытаний образцов и результаты 
экспериментов представлены в табл. 1. Далее на примере образца № 2 пред-
ставлены основные характеристики исследованных образцов. На рис. 1 пред-
ставлен характерный вид образца до и после воздействия потока диссоции-
рованного воздуха. До испытания лицевая поверхность образца разнотонная, 
серо-коричневая, гладкая. После испытаний лицевая поверхность образца 
серо-коричневая, шероховатая в центральной части, со светлыми (почти бе-
лыми точками) в зоне воздействия максимальных температур.

На рис. 2 приведены зависимости от времени максимальной температуры 
на всей поверхности этого образца по данным термовизора (розовая линия), 

(a) (б)

(в) (г)

Рис. 1. Фотографии образца №2, (a) и (б) – до испытания, (в) и (г) после испытания. (а) 
и (в) – лицевая сторона; (б) и (г) – тыльная сторона.
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Таблица 1. Результаты испытаний образцов

Обра- 
зец Описание Режим испытаний Результат

№ 1 Масса образ-
ца до испыта-
ния 5.5949 г

Ступенчатый нагрев 
до 1650°С в дозвуко-
вом потоке диссоци-
ированного воздуха 
с диаметром струи 
80 мм.

Расстояние от вы-
ходного сечения 
разрядного канала 
до образца – 60 мм; 
продолжительность 
испытания – 956 с

Образец выдержал воздействие 
в режиме ступенчатого нагрева 
с максимальной температурой 
поверхности ~1670°С.

Дальнейшее увеличение темпе-
ратуры поверхности не произ-
водилось, поскольку было 
достигнуто предельное значе-
ние мощности ВЧ-генератора 
плазмотрона.

Унос массы составил 1.0598 г
№ 2 Масса образ-

ца до испыта-
ния 7.0344 г. 

Толщина 
образца – 
2.943 мм

Ступенчатый нагрев 
в дозвуковом потоке 
диссоциированного 
воздуха, истекаю-
щего из сопла с диа-
метром выходного 
сечения 40 мм.

Расстояние от вы-
ходного сечения 
сопла до поверхно-
сти образца – 40 мм; 
продолжительность 
испытания – 1439 с

Образец выдержал воздействие 
с максимальной температурой 
поверхности ~1750°С.

Дальнейшее увеличение темпе-
ратуры поверхности не произ-
водилось, поскольку было 
достигнуто предельное значе-
ние мощности ВЧ-генератора 
плазмотрона.

Унос массы составил 0.2325 г. 
Линейный унос составил 
0.01 мм

№ 3 Масса образ-
ца до испыта-
ния 8.4528 г.

Толщина 
образца
3.28 мм

Ступенчатый нагрев 
в дозвуковом потоке 
диссоциированного 
воздуха, истекаю-
щего из сопла с диа-
метром выходного 
сечения 30 мм; рас-
стояние от выходно-
го сечения сопла до 
лицевой поверхности 
образца 30 мм

Температура начала активно-
го разрушения поверхности 
образца составила ~1810°С. 
Подтверждена термическая 
стойкость материала до указан-
ной границы температур.
При извлечении образца из 
оправки произошло повре-
ждение (разрушение) образца. 
В связи с этим величины ли-
нейного и массового уноса не 
определялись

№ 4 Масса образ-
ца до испыта-
ния 11.7209 г.

Режим постоянной 
температуры по
верхности 1750°С в

В процессе испытания образец 
разрушился. Время выдержки 
при температуре 1750°С соста-
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средней температуры в окрестности критической точки по данным термо-
визора (красная линия), цветовой температуры в окрестности критической 
точки (синяя линия), радиационной температуры в окрестности критиче-
ской точки (серая линия), а также давления в барокамере (зеленая линия) и 
мощности ВЧ-генератора плазмотрона по анодному питанию (черная линия). 
При измерениях температуры лицевой поверхности образца термовизором 

Обра- 
зец Описание Режим испытаний Результат

Толщи-
на образца 
4.9–5.0 мм 
(профиль 
поверхно-
сти образца 
искривлен)

дозвуковом потоке 
диссоциированного 
воздуха, истекаю-
щего из сопла с диа-
метром выходного 
сечения 30 мм; рас-
стояние от выходно-
го сечения сопла до 
лицевой поверхности 
образца 30 мм

вило 3303 с. Интенсивный 
процесс разрушения образца, 
вероятно, начался с 2872-й 
секунды испытания. При этом 
заметные колебания темпера-
туры поверхности начались уже 
с 1300-й секунды испытания.

Величины линейного и массо-
вого уноса после испытаний 
не определялись, поскольку 
произошел сквозной прогар 
образца

№ 
НКТ 
336 

(№ 2)

№ 5

Масса образ-
ца до испыта-
ния 7.2500 г.

Толщи-
на образца 
2.992 мм

Ступенчатый нагрев 
в дозвуковом потоке 
диссоциированного 
воздуха, истекаю-
щего из сопла с диа-
метром выходного 
сечения 30 мм; рас-
стояние от выходно-
го сечения сопла до 
лицевой поверхности 
образца 30 мм

Заданный режим испытания 
реализован успешно. Темпера-
тура начала интенсивного раз-
рушения поверхности образца 
составила 1840°С.

Унос массы 0.4238 г.
Линейный унос 0.329 мм

№ 
НКТ 
333 

(№ 1)

№ 6

Толщина 
2.994 мм. 
Масса до 
испытания 
7.4627 г

Режим постоянной 
температуры 1700°С 
в дозвуковом потоке 
диссоциированного 
воздуха, истекаю-
щего из сопла с диа-
метром выходного 
сечения 30 мм; рас-
стояние от выходно-
го сечения сопла до 
лицевой поверхности 
образца 30 мм

Заданный режим испытания 
реализован успешно. Образец 
№ НКТ 333 (№ 1) испытание 
выдержал. Время испытания 
при температуре 1700°С соста-
вило 1800 с.

Унос массы 0.8362 г. Линей-
ный унос 0.053 мм

Окончание табл. 1
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использовалось предустановленное значение спектральной излучательной 
способности 0.8 (на длине волны 0.9 мкм).

На рис. 3 приведены термоизображения образца № 2, зарегистрирован-
ные на 261-й, 978-й, 1439-й, последней, секундах испытания. На приведен-
ных термоизображениях видно, что образец прогревался равномерно, зоны 
локального перегрева отсутствовали.

На рис. 4 представлены зависимости от времени интегральной и спек-
тральной (на длине волны 0.9 мкм) излучательной способности поверхности 
материала в процессе испытания, а также температуры, из которых они полу-
чены. Приведенные значения являются оценочными с учетом грубости при-
меняемого метода измерения (in situ).

Рис. 4 показывает, что интегральная излучательная способность в начале 
эксперимента составляла ~0.85; на 400-й секунде эксперимента (1436°С) до-
стигла максимального значения (близкого к 0.99) и затем снижалась до 0.9 
к концу воздействия. Спектральная излучательная способность (на длине вол-
ны 0.9 мкм) в начале эксперимента составляла ~0.75; на 400-й секунде экспе-
римента (1436°С) достигла максимального значения (0.95) и затем монотонно 
снижалась до 0.82 к концу воздействия.

В табл. 2 приведены результаты исследования излучательных свойств ли-
цевой поверхности образца при нормальных условиях (комнатной температу-
ре), до и после воздействия потока высокоэнтальпийного воздуха, проведен-
ных с помощью приборов Surface Optics ET100 и 410-Solar.
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Рис. 2. Зависимости от времени основных параметров работы плазмотрона и температур 
поверхности, измеренных пирометром спектрального отношения, пирометром полного 
излучения и термовизором в эксперименте с образцом № 2.
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Рис. 3. Термоизображения образца №2 на 261-й (а), 978-й (б) и 1439-й (в) секундах ис-
пытания и (г, д, е) – соответствующие профили температуры вдоль линий, отмеченных 
на рисунках (a, б, в).

Рис. 4. Зависимости от времени интегральной и спектральной (на длине волны 0.9 мкм) 
излучательной способности поверхности материала образца № 2 в процессе испытания, 
а также температуры, из которых они получены.
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На рис. 5 и 6 приведены результаты микроскопического исследования ли-
цевой поверхности образца с применением стереомикроскопа Olympus SZX-7 
с диапазоном от 0.8х до 5.6х. Из рисунков видно, что воздействие потока дис-
социированного воздуха привело к изменениям микроструктуры поверхности.

Для оценки изменения химического состава до и после обработки об-
разцы исследовались методом рамановской спектроскопии и сканирующей 
электронной микроскопии. Рамановский сигнал снимался с поверхности об-
разца. Следует отметить, что поскольку покрытие имеет значительную тол-
щину и некоторую неоднородность по составу, то в стяжку возбуждающего 
пучка попадают области различного состава и в различных пропорциях. Так, 
при анализе образцов после синтеза покрытия было выявлено, что в некото-
рых областях происходит неполное преобразование слоя в карбид кремния и 
остается доля закристаллизованного кремния. На рис. 7а представлены харак-
терные спектры исходного графита до нанесения защитного слоя – 1, спек-
тры после нанесения слоя в различных в областях: 2 – где произошло полное 
преобразование поверхности в карбид кремния, 3 – где произошло неполное 
преобразование и в приповерхностной области остался кремний. На спектрах 
4, 5 представлены спектры подобных областей после испытаний: 4 – спектр 
области, содержащей кремний, 5 – спектр области из чистого карбида крем-
ния. Спектры содержат как характеристические линии графита [29] (1352, 
1583, 2715 обр. см), карбида кремния [30–32] (796, 972 обр. см), кремния (523 
обр. см), а также линии 230 и 417 обр. см, которые соответствуют соединению 
SiO2 в форме кристобалита [33].

Рис. 5. Фотографии поверхности образца № 2 до воздействия потока высокоэнтальпий-
ного воздуха. а) – край образца при увеличении 1x, б) – середина поверхности образца 
при увеличении 5х.

Таблица 2. Излучательные свойства лицевой поверхности образца № 2 при 
комнатной температуре до и после воздействия

Образец № 2 ET100 410-Solar Примечаниеɛ20 ɛ60 ɛH ɑt ɑtc

До воздействия 0.840 0.770 0.790 0.858 0.899 Среднее по 3-м 
замерамПосле воздействия 0.893 0.885 0.836 0.824 0.864
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На рис. 7б представлено изображение скола образца в области, содержа-
щей SiO2 и остаточный кремний, после испытания. На рис. 7в приведены 
данные с датчика энергодисперсионной спектроскопии (EDS) микроскопа 
об атомном составе образца, снятые вдоль линии на рис. 7б. График 7в на-
глядно демонстрирует глубину преобразования графита в SiC, которая состав-
ляет до 1.4 мм, а также наличие кислорода (являющегося частью соединения 
кристобалита SiO2) на глубинах до 290 мкм. Отметим, что поскольку скол об-
разца крайне неровный и при сканировании сигнала вдоль него электронный 
луч иногда попадает в имеющиеся поры [34], то в некоторых областях рис. 7в 
сигнал отсутствует.

Из этих результатов следует, что области защитного покрытия, состоящие 
из чистого карбида кремния, практически не меняют свой состав в процессе 
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Рис. 6. Фотографии поверхности образца № 2 после воздействия потока высокоэнталь-
пийного воздуха. a) – край образца при увеличении 5x, б) – середина поверхности образ-
ца при увеличении 5х.

Рис. 7. Рамановские спектры поверхности образца до и после испытания (a), СЭМ-изоб-
ражение скола образца после испытания (б) и данные по элементному составу, опреде-
ленные методом энергодисперсионной спектроскопии (EDS) (в).
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воздействия. Вместе с тем области, обогащенные кремнием, преобразуются в 
SiO2 в форме кристобалита.

Отметим, что образование SiO2 возможно и в результате взаимодействия 
карбида кремния с кислородом воздуха по реакции [35, 36]:

	 ( ) ( ) ( ) ( )      2 2 2SiC solid 2O gas SiO solid CO gas+ = + .	 (3.1)
Эта реакция начинает протекать при температуре выше 800°С. Образую-

щийся SiO2 в форме кристобалита покрывает SiC и препятствует дальнейше-
му его окислению. Известно, что кристобалит – высокотемпературная фор-
ма кварца. Кристобалит плавится при температуре 1728°C. Выделяющийся 
в процессе реакции (3.1) CO2 может реагировать с остаточным кремнием в 
графите, образуя SiC по реакции: 

	 ( ) ( ) ( ) ( )   2 2CO gas 2Si gas SiO solid SiC solid+ = + ,	 (3.2)
дополнительно к уже присутствующему в графите слою SiC.

Таким образом, синтезированный новый материал не только получается 
в результате двух связанных между собой химических реакций (1.1) и (1.2), 
но и подвергаясь воздействию кислорода воздуха при высокой температуре, 
в нем могут возникнуть химические процессы (если в графите присутству-
ет остаточный кремний) с участием двух химических реакции (3.1) и (3.2), 
предохраняющие его от разрушения. Потеря части SiC в результате окисления 
компенсируется его синтезом из остаточного Si. Можно сказать, что разрабо-
танный нами композитный материал, окисляясь и теряя часть своих свойств 
в результате реакции (3.1), частично “залечивается”.

Заключение. В работе представлен и успешно реализован метод синтеза 
термостойких покрытий из карбида кремния на графитовых изделиях посред-
ством химической реакции между расплавленным кремнием, моноксидом уг-
лерода и графитом. Методология проверена серией экспериментов по нагреву 
полученных образцов в дозвуковых потоках высокоэнтальпийного воздуха, 
при этом были изучены свойства полученных покрытий в различных темпе-
ратурных условиях. В частности, исследована равномерность нагрева образ-
цов, их термическая стойкость и антиокислительные свойства, что показало 
высокую эффективность покрытия в условиях высоких температур. В процес-
се испытаний установлено, что нагрев образца происходит равномерно, что 
свидетельствует о том, что материал обладает хорошей теплопроводностью. 
Кроме того, подробно изучены морфология, структура, химический состав, 
механические и излучательные свойства поверхности до и после термической 
обработки. Результаты показали, что синтезированные покрытия обладают 
высокой однородностью и прочностью, а также сохраняют свои функцио-
нальные свойства после длительного воздействия высоких температур. По-
казано, что в процессе воздействия высокоэнтальпийного дозвукового потока 
диссоциированного воздуха в приповерхностной области покрытия SiC мо-
жет формироваться кристобалит. Кроме того, при высокотемпературном воз-
действии материал частично “самовосстанавливается” путем преобразования 
остаточного кремния в SiC. Предлагаемый метод нанесения карбида кремния 
на графитовые изделия может найти широкое применение в различных отрас-
лях, где требуется высокая термостойкость материалов.
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В.В. Антипов, А.С. Гращенко, С.А. Кукушкин, А.В. Осипов и А.В. Редь-
ков выполняли свою часть работы в рамках госзадания Министерства нау-
ки и высшего образования Российской Федерации в ИПМаш РАН (№ 
121112500383-9). Синтез и часть исследований образцов проводились на УНУ 
“Физика, химия и механика кристаллов и тонких пленок”” в ИПМаш РАН. 
Экспериментальные исследования образцов в ИПМех РАН выполнены на 
уникальной научной установке РФ “Высокочастотные индукционные плаз-
мотроны ВГУ-3 и ВГУ-4” (http://www.ckp-rf.ru//usu/441568). Авторы при-
знательны И.Е. Чистикову за помощь при измерении рамановских спектров 
образцов SiC/C, Е.В. Убыйвовку за помощь СЭМ-измерениях и получении 
зависимости химического состава образца SiC/C, представленного на рис. 7б, 
в, И.В. Лукомскому и Ю.К. Рулеву за помощь в проведении испытаний на 
установке ВГУ-4.
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Abstract – A method for forming heat-resistant silicon carbide coatings on graph-
ite products is proposed and investigated. The coating is formed by simultaneous 
occurrence of several chemical reactions between the silicon melt, carbon monox-
ide and the near-surface region of graphite at temperatures slightly exceeding the 
melting point of silicon. The formed coating has a thickness of up to several milli-
meters, has high mechanical strength and hardness. The samples were examined by 
various methods, including Raman spectroscopy, SEM. Thermal resistance of the 
obtained coatings was studied by testing in high-enthalpy subsonic air flows. It was 
shown that the coatings withstand such exposure at temperatures up to 1750°C for 
30 min. Mechanisms of self-healing of the coating under the influence of oxygen at 
high temperature were revealed.

Keywords: coating, thermochemical resistance, destruction, high-frequency plas-
matron, high-enthalpy subsonic air flows, graphite, silicon carbide
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