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Исследуется длительное разрушение длинной тонкостенной цилиндри-
ческой оболочки при ползучести в условиях нестационарного сложного 
напряженного состояния с учетом влияния активной окружающей сре-
ды. Влияние окружающей среды на ползучесть и длительную прочность 
оболочки определяется диффузионным проникновением элементов 
окружающей среды в материал оболочки. С помощью кинетической 
теории Ю.Н. Работнова определены времена до разрушения такой обо-
лочки при нестационарном нагружении. Применяется сингулярная 
дробно-линейная модель ползучести и длительной прочности, в ко-
торой предел прочности материала при соответствующей температуре 
выполняет роль предельного напряжения. Для учета накопления повре-
ждений в процессе ползучести и определения критерия до разрушения 
используются скалярный и векторный параметры поврежденности, при 
этом компоненты векторного параметра поврежденности связаны с про-
странством главных напряжений. Для оценки скорости диффузионного 
процесса используется приближенный метод решения уравнения диф-
фузии, основанный на введении диффузионного фронта. Учет влияния 
окружающей среды на время до разрушения осуществляется с помощью 
введения в определяющие и кинетические дробно-линейные соотноше-
ния функции от интегрально средней концентрации. Проведено сравне-
ние времен до разрушения при использовании скалярного и векторного 
параметров поврежденности. Определены особенности использования 
дробно-линейной модели для описания процессов длительного разру-
шения.
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Введение. Обеспечение безопасной эксплуатации материалов и элементов 
конструкций, подверженных влиянию активной среды, является важной и ак-
туальной задачей для обеспечения безопасности и надежности ответственных 
конструкций на протяжении всего срока эксплуатации. Особенное внимание 
следует уделять прогнозированию ресурса работы материалов и элементов 
конструкций в присутствии активной внешней среды. Это влияние может 
быть обусловлено как диффузионным проникновением, так и химическим 
взаимодействием активной среды с материалом. Особое значение приобретает 
изучение таких процессов при высокотемпературном длительном нагружении 
металлов и сплавов в условии ползучести [1–8].

Определение времени до разрушения тонкостенной цилиндрической обо-
лочки, являющейся одним из распространенных элементов конструкций, 
в указанных условиях имеет как фундаментальный, так и прикладной харак-
тер при расчете элементов конструкций энергетического, химического и авиа-
ционно-космического назначения.

Вопросам ползучести и длительной прочности с учетом влияния активных 
сред уделяется недостаточное внимание. Среди авторов, которые занимают-
ся подобными исследованиями, следует отметить работы И.Г. Овчинникова 
с соавт. [9–14], В.Н. Киселевского [15], П.А. Павлова с соавт. [16], А.М. Ло-
кощенко [2, 17–19] и других ученых. В литературе, как правило, рассматри-
вается одноосное растяжение. Актуальность исследования длительного раз-
рушения с учетом влияния активной среды при нестационарном сложном 
напряженном состоянии в данной работе несомненна.

Предлагаемое в данной статье исследование является развитием научных 
исследований по ползучести и длительной прочности с учетом взаимодей-
ствия активной среды с материалами и элементами конструкций, которые 
длительное время осуществлялись в НИИ механики МГУ им. М.В. Ломоно-
сова под руководством профессора А.М. Локощенко [2].

1. Постановка задачи. Рассмотрим длинную тонкостенную цилиндрическую 
оболочку без днищ с радиусом срединной поверхности R и толщиной стенки 
H. Пусть эта оболочка находится под действием растягивающей осевой силы 
P и внутреннего давления Q. Оболочка находится в активной среде. Влияние 
активной среды определяется диффузионным проникновением ее элементов 
внутрь материала. Кривизна тонкостенной оболочки мала, и отношение тол-
щины стенки оболочки к ее радиусу много меньше единицы. Этот факт поз-
воляет с высокой степенью точности рассматривать диффузию среды в стенку 
оболочки как одномерную диффузию в плоскую пластину. Оболочка со всех 
сторон окружена активной средой (например, воздух при высокой температу-
ре является активной средой), поэтому рассматривается симметричный диф-
фузионный процесс относительно срединной поверхности стенки оболочки.

В настоящем исследовании рассмотрена программа нестационарного на-
гружения оболочки, которая осуществляется путем раздельного, последова-
тельного во времени действия внутреннего давления и осевой растягивающей 
силы вплоть до разрушения.

2. Приближенный метод решения уравнения диффузии. Дифференциаль-
ные уравнения параболического типа используются при решении многих за-
дач диффузии [20], фильтрации [21] и теплопроводности [22], поэтому они 
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являются предметом обширных исследований. Представляют интерес методы, 
которые позволяют получить качественное и количественное описание из-
менения искомой характеристики во времени и в пространстве в обозримой 
форме.

Точные решения уравнения диффузии для ограниченных тел представ-
ляются обычно в виде тригонометрических рядов или рядов, состоящих из 
специальных функций, которые не всегда позволяют получить представления 
искомых характеристик в обозримом анализируемом виде. Эти решения гро-
моздки по виду, и кроме того, для получения приемлемой точности в расчетах, 
особенно при малых временах, необходимо удерживать большое количество 
членов рядов. При решении уравнений, в которых границы рассматриваемой 
области зависят от времени, особенно если эта зависимость должна опреде-
ляться из решения, целесообразно использовать приближенные методы.

Приближенные методы расчета нестационарных полей описаны в ряде 
классических монографий (например, [22–24]). В большинстве рассмотрен-
ных методов решение параболического уравнения представляется в виде по-
линома относительно пространственных координат. При этом коэффициен-
ты членов ряда – постоянные или зависящие от времени величины – опре-
деляются с помощью различных вариационных методов. Ряд ученых считает 
целесообразным разделить всю рассматриваемую область на невозмущенную 
и возмущенную части и исследовать движение границы (диффузионного 
фронта) между этими частями.

Метод приближенного решения параболических задач с введением фронта 
возмущения впервые, по-видимому, был рассмотрен К.Э. Лембке [25], затем 
он был развит Л.С. Лейбензоном [26], И.А. Чарным [27], Г.И. Баренблаттом 
[28], С.А. Шестериковым и М.А. Юмашевой [29] и другими учеными.

В последние годы в Институте механики МГУ им. М.В. Ломоносова про-
ведено систематическое экспериментально-теоретическое исследование 
влияния агрессивной среды на ползучесть и длительную прочность металлов 
(А.М. Локощенко, [2, 17–19]). При этом получены решения задач при взаи-
модействии диффузионного фронта и фронта разрушения, показана зависи-
мость координаты диффузионного фронта не только от расстояния до внеш-
ней границы, но и от кривизны границы, проведена оценка погрешностей 
полученных решений.

В настоящей работе для анализа процесса диффузии активной окружаю-
щей среды внутрь рассматриваемой тонкостенной цилиндрической оболочки 
предлагается приближенный метод решения уравнения диффузии, основан-
ный на введении диффузионного фронта, распространяющегося от поверх-
ности оболочки [2, 6, 17]. Из-за малой кривизны стенки оболочки можно 
рассматривать диффузионный процесс как одномерный процесс в плоской 
пластине, который происходит симметрично вследствие геометрической сим-
метрии плоской пластины относительно срединной поверхности и симмет-
рии граничных условий и характеристик диффузии. Рассматриваемый при-
ближенный подход позволяет разделить все поперечное сечение оболочки на 
возмущенную (где среда уже проникла в материал) и невозмущенную области 
(где еще нет проникновения среды) и затем отслеживать во времени движение 
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границы (диффузионного фронта) между этими областями. Зависимость кон-
центрации c активной среды в материале оболочки от времени аппроксимиру-
ется в виде полинома, причем граничные и начальные условия выполняются 
точно, а уравнение диффузии удовлетворяется интегрально во всем попереч-
ном сечении оболочки.

Из условия симметрии рассматриваем половину сечения оболочки по 
толщине. Введем безразмерные переменные z = 2z/H, (0 ≤ z ≤ 1), t = 48Dt/H 2, 
c = c/c0, где z – координата вдоль толщины оболочки (z = 0 – на границе по-
перечного сечения оболочки с внешней средой, z = 1 – на срединной линии 
поперечного сечения оболочки), t – время, c0 – постоянная концентрация 
на границе материала оболочки и внешней среды, D = const – коэффициент 
диффузии. Уравнение одномерной диффузии в этих переменных принимает 
следующий вид:

	 ( )( ) .2 21 12 0 0 1c t c z t z∂ ∂ = ∂ ∂ < < ∞ < < 	 (2.1)
Начальное и граничные условия имеют вид:

	 ( ), ,0 0c z =  ( ), ,0 1c t =  ( ), .1 0c z t∂ ∂ =

Здесь предполагается скачок концентрации на поверхности оболочки в мо-
мент времени t  = 0. Последнее условие (на срединной поверхности при z  = 1) 
принято вследствие симметрии диффузионного процесса относительно сре-
динной поверхности оболочки.

Зависимость концентрации c от координаты z в данной работе принимает-
ся в виде квадратного полинома, удовлетворяющего граничным и начально-
му условиям. При этом рассматриваются два этапа процесса диффузии: этап 
проникновения фронта и этап насыщения, которые разделены моментом вре-
мени t 0 [2, 6, 17]:

	 ( )
( )

( ) ( )

( ( )) , ( ),

, , ( ) ,

, ( ) ( ) ,

2

0

0

2
0

1 при 0 0

0 при 0 1

1 1 при

z l t t t z l t

c z t t t l t z

c z t B t B t z t t

 − < ≤ ≤ ≤ 
=  < ≤ < ≤


= + − ⋅ − >   

	 (2.2)

где l (t ) – координата диффузионного фронта, t 0 – время перехода между эта-
пами диффузионного процесса, B(t ) – концентрация в центре поперечного 
сечения оболочки при t  ≥   t 0 (на срединной линии z = 1).

Неизвестные зависимости l (t ) и B(t ) определяются из интегрального 
удовлетворения параболической функцией c(z, t ) из (2.2) уравнению диффу-
зии (2.1) [2].

В результате получим координату диффузионного фронта l (t ) и концен-
трацию B(t ) в следующем виде:

	 ,l t=   ( )( )exp .01 1 4B t t = − − −  	 (2.3)
Диффузионный фронт достигает срединной линии поперечного сечения 

оболочки в момент времени t 0, при этом l  = 1. На основе данного граничного 
условия получаем значение времени t 0 = 1.
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Используя соотношения для концентрации (2.2) и соотношения (2.3), по-
лучим выражения для ( ),c z t в следующем виде:

	
( )

( ) ( )( )

( ( )) , ,

, , ,

( ) exp .

2

2

1 при 0 1 0

0 при 0 1 1

1 1 1 1 4 1 при 1

z t t z t

c z t t t z

z t t

  − < ≤ ≤ ≤  

= < ≤ < ≤

  − − − − − > 

	 (2.4)

В дальнейшем для анализа влияния активной среды на время до разруше-
ния оболочки будет использована интегрально средняя концентрация cm(t ), 
которая имеет вид:

	 ( )
( )

( ) ( )( )
,

( ) ,
exp .

1

0

1 3 при 0 1

1 2 3 1 4 1 при 1
m

t t
c t c z t dz

t t

 < ≤= = 
 − ⋅ − − >  

∫ 	 (2.5)

Таким образом, уравнение (2.5) определяет два этапа развития диф-
фузионного процесса в рассматриваемой тонкостенной цилиндрической 
оболочке.

В монографии [2] приведен результат численного эксперимента по сравне-
нию точного и предлагаемого приближенного решений уравнения диффузии. 
В качестве меры погрешности d(t ) приближенного решения c(z, t ) по сравне-
нию с точным cexact(z, t ) в [2] рассмотрено равенство:

	 ( ) ( )( )exact( ) , , .
1

2

0

t c z t c z t d zd = −∫ 	 (2.6)

В результате получено, что мера погрешности d(t ) по (2.5) составляет еди-
ницы процентов и уменьшается с ростом показателя степени используемого 
полинома аппроксимации c(z, t ).

С учетом известного факта о том, что экспериментальные кривые ползу-
чести и времена до разрушения имеют, как правило, значительный статисти-
ческий разброс при одних и тех же значениях механических напряжений и 
температур, влияние незначительного отклонения концентрации активной 
среды на ползучесть и длительную прочность в соответствии приближенным 
решением по сравнению с точным решением является вполне приемлемым.

3. Определение компонент напряженно-деформированного состояния при 
использовании дробно-линейной модели ползучести. Рассматриваемая задача 
является статически определимой, и напряженное состояние определяется 
только внешними нагрузками. Напряженное состояние в оболочке является 
плоским (с нулевым радиальным напряжением srr).

Компоненты тензора напряжений получены из уравнений равновесия эле-
ментарного объема тела (уравнения теории оболочек [30]):

	 , .
2zz

P RQ
RH Hqqs = s =
p

	 (3.1)
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Интенсивность напряжений su и среднее нормальное напряжение s 
в рассматриваемой задаче, соответственно, равны:

	 ( ) ( )2 2
u zz zzqq qqs = s + s −s s , ( )1

3 zz rr qqs = s + s + s , 

	 0rrs = , ( )1

3 zz qqs = s + s .

Рассмотрим вариант описания процесса ползучести с использовани-
ем дробно-линейного соотношения, предложенного С.А. Шестериковым и 
М.А. Юмашевой [31].

Для описания ползучести металлов и сплавов в одномерном случае наи-
большее распространение получила степенная зависимость скорости устано-
вившейся ползучести p  от напряжения s, которая имеет вид:

	 np = as   const, = consta = n .
Она достаточно хорошо аппроксимирует экспериментальные данные в вы-

бранном узком диапазоне напряжений для широкого класса металлических 
материалов и сплавов, но, как отмечал Ю.Н. Работнов [1], если брать доста-
точно широкий диапазон напряжений, то показатель степени n становится 
зависящим от напряжения s.

Одним из возможных вариантов соотношений для описания процессов 
ползучести является дробно-линейная зависимость [31], которая в ряде слу-
чаев позволяет достаточно хорошо выразить скорость ползучести как функ-
цию от напряжения в широком диапазоне напряжений. С.А. Шестериков и 
М.А. Юмашева предложили использовать такую зависимость в следующем 
виде:

	 const,0 0
b

p k k
s − s

= s > =
s − s



где s0 – предел ползучести (при s < s0 деформация ползучести практически 
отсутствует), во многих случаях можно принять s0 = 0, sb – предел кратковре-
менной прочности при соответствующей температуре испытания.

При напряжениях, близких к sb, скорость деформации ползучести p  су-
щественно возрастает, и в рассматриваемые времена наступает разрушение. 
Таким образом, в дробно-линейном соотношении напряжение sb выполняет 
роль предельного напряжения. В отличие от стандартной степенной зависи-
мости, где напряжение может выбираться сколь угодно большим, в данной 
сингулярной зависимости напряжение ограничено величиной sb, что является 
более обоснованным с физической и механической точек зрения.

Качественный график дробно-линейной зависимости при s0 = 0 представ-
лен на рис. 1.

Учет влияния активной среды осуществим путем введения в дробно-ли-
нейное [6, 31] определяющее соотношение функции от интегрально средней 
концентрации активной среды f(cm(t )) в материале оболочки:

	 ( )( ) ( )( ),u u b u mp A f c t= s s −s ⋅ 	 (3.2)
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где up  – интенсивность скоростей деформаций ползучести, здесь и далее точ-
ка над соответствующим символом означает производную по времени t , su – 
интенсивность напряжений, sb – предел кратковременной прочности при за-
данной температуре испытания (здесь принято, что значения sb при растяже-
нии и сжатии совпадают), cm(t ) – интегрально средний уровень концентрации 
элементов окружающей среды в оболочке, A – материальная константа.

Следует отметить, что в соотношении (3.2) используется интенсивность 
напряжений su, которая всегда является положительной величиной незави-
симо от знака напряжений.

В дальнейших расчетах будем использовать линейный вид функции 
f(cm(t )), удовлетворяющей условию f (0) = 1:
	 ( )( ) ( ),1m mf c t a c t= + ⋅ 	 (3.3)
где a = const – константа, определяемая из экспериментов по длительной 
прочности с учетом влияния окружающей активной среды [4, 32].

Дополнительно в настоящем исследовании примем следующие допущения:
1) деформации малы;
2) для определения компонент напряженно-деформированного состояния 

используется теория оболочек [30];
3) несжимаемость материала оболочки;
4) упругопластическими деформациями пренебрегаем по сравнению с де-

формациями ползучести.
Зависимость компонентов тензора деформаций ползучести от компонен-

тов тензора напряжений в предположении установившегося характера ползу-
чести материала оболочки с учетом несжимаемости материала определяется 
на основе гипотезы пропорциональности девиаторов напряжений и скоростей 
деформаций ползучести для несжимаемого тела в виде [1, 2]:

	
( ) ( )3 1

, , , ,
2 3

u
ij ij ij ij ij kk u u

u

f
p s s p f

s
= = s −sd s = s = s

s
  	 (3.4)

0

p
.

σσb

Рис. 1. Дробно-линейная зависимость скорости деформации ползучести от напряжения 
при s0 = 0.
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где  .pii = 0 – условие несжимаемости материала, sij – девиатор напряжений, 
dij – единичный тензор Кронекера.

С учетом принятого соотношения (3.2) для up

	

( )( ) ( )( )
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3
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1 2 1
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u b u m
zz zz zz zz zz
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zz zz zz

A f c t
p s s

sqq qq

s s − s ⋅
= = s − sd

s

 s = s + s = s − s 
 



получим выражение для zzp :

	
( )( )

( )
1

2
m

zz zz
b u

Af c t
p qq

 = s − s  s −s
 	 (3.5)

Аналогично можно получить выражение для pqq :

	 ( )( ) ( )( )
, , ,3 2 1

2 3 2
u b u m
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A f c t
p s s sqq qq qq qq qq qq qq

s s − s ⋅  = = s − sd = s − s s  

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zz
b u

Af c t
pqq qq

 = s − s s − s  
 	 (3.6)

В результате соотношения (3.1), (3.5) и (3.6) определяют напряженно-де-
формированное состояние тонкостенной цилиндрической оболочки с учетом 
использования дробно-линейной модели ползучести.

4. Длительное разрушение оболочки с учетом влияния активной среды. Ска-
лярный и векторный параметры поврежденности. В настоящее время суще-
ствует недостаточное количество систематических экспериментальных дан-
ных о деформациях ползучести и длительной прочности при произвольных 
нестационарных сложных напряженных состояниях. Следует также отметить 
случайный характер накапливаемых повреждений при изменении вида слож-
ного напряженного состояния.

Возникает вопрос: каким способом произвести учет накопления поврежде-
ний в процессе ползучести? По мнению автора статьи, для моделирования 
процессов разрушения оптимальным является использования векторного па-
раметра накопления повреждений.

Использование скалярного параметра не всегда позволяет в полной мере 
учесть чувствительность скорости ползучести и накопления повреждений к 
анизотропным свойствам материала. Отметим, что анизотропность свойств 
может быть результатом предварительной механической обработки матери-
алов и изделий.

Применение тензорного параметра поврежденности, как правило, при-
водит к необходимости определения значительного числа материальных 
констант и материальных функций, что может являться трудоемкой зада-
чей в связи с необходимостью проведения широкой серии установочных 
экспериментов.

Векторный подход в этих смыслах является оптимальным.
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Необходимо также отметить, что векторный подход позволяет модели-
ровать длительную прочность и определять времена до разрушения как при 
неизменном положении главных осей, так и при изменении ориентации глав-
ных осей напряженно-деформированного состояния, даже когда такое изме-
нение ориентации главных осей многократно повторяется. Так, например, в 
работе [33] рассмотрены результаты известных испытаний трубчатых образ-
цов при постоянном осевом напряжении и постоянном или знакопеременном 
касательном напряжении. Эксперименты показывают, что циклическое изме-
нение знака касательных напряжений приводит к значительному увеличению 
времени до разрушения. Для описания этого эффекта использован кинетиче-
ский подход Л.М. Качанова [34, 35] с векторным параметром поврежденно-
сти. Применение этого подхода приводит к хорошему соответствию экспери-
ментальных и теоретических значений времен до разрушения.

Кроме этого, в статье [36] при помощи векторного подхода моделирует-
ся известный эффект, заключающийся в том, что время до разрушения при 
равноосном плоском напряженном состоянии в несколько раз меньше вре-
мени до разрушения при одноосном растяжении при том же значении напря-
жения. С этой целью предложен вариант кинетической теории ползучести и 
длительной прочности академика Ю.Н. Работнова [1] при дополнительном 
учете анизотропии материала. Также в указанной статье моделирование дли-
тельной прочности при скачкообразном изменении интенсивности напряже-
ний проведено двумя способами: как при учете накопления поврежденности 
только в процессе ползучести, так и при дополнительном учете накопления 
поврежденности при мгновенном нагружении.

Все варианты предложенных кинетических уравнений приводят к хоро-
шему соответствию экспериментальных и теоретических значений времен до 
разрушения.

Аналитический обзор известных экспериментальных и теоретических ис-
следований ползучести и длительной прочности металлов при нестационар-
ных сложных напряженных состояниях, опубликованных за последние 60 лет, 
приведен в статье [37].

Используем кинетическую теорию ползучести и длительной прочности 
Ю.Н. Работнова [1] и введем в кинетические уравнения функцию от инте-
грально среднего уровня концентрации cm(t ).

Кинетическое уравнение при учете скалярного параметра поврежденности 
рассмотрим в следующем виде:

	
( )( ) ( )( )

( )
,

.0 0

u b u md dt C f c t

t

w = w = s s − s ⋅

w = =



	 (4.1)

Критерием разрушения является достижение параметром поврежденности 
w*(t  = t w*) = 1 значения, равного единице в момент времени t  = t w*.

Как вариант развития моделирования накопления повреждений в условии 
длительного высокотемпературного нагружения можно в качестве парамет-
ра поврежденности взять вектор W(W1, W2, W3) [35, 38], компоненты которого 
связаны с пространством главных напряжений si (i = 1, 2, 3) и определяются 
в общем виде следующими зависимостями:
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В настоящей работе с учетом рассматриваемой далее раздельной програм-
мы нагружения оболочки внутренним давлением и осевой растягивающей 
силой оси введенной цилиндрической системы координат (z, q, r) являются 
главными осями напряженно-деформированного состояния. Кинетические 
уравнения при учете векторного параметра поврежденности [38] W примем 
в следующем виде:
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d dt i z
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где Wi – проекция вектора поврежденности на i-ю ось системы координат.
Критерием разрушения является достижение длиной W вектора W значе-

ния, равного единице:

	 ( ) ( )2 2
z qW = W + W  ( )0 0tW = =  ( )* * .1t tWW = W = =

Здесь необходимо дать некоторые комментарии по поводу определении 
параметров уравнений моделей ползучести и длительного разрушения.

В описания процесса ползучести для широкого класса металлических ма-
териалов используются степенная и дробно-линейная модели ползучести, 
указанные в п. 3 данной статьи. Материальные параметры a, n, b определя-
ются на основе обработки эксперимента. Эксперимент представляет собой 
испытание на ползучесть при растяжении стандартного образца из материала, 
свойства которого необходимо изучить. В результате эксперимента получают 
семейство кривых ползучести, каждая из которых получена при определен-
ном механическом напряжении s. Для определения a, n, b используют вторые 
участки семейства кривых ползучести – участки установившейся ползучести 
на каждой кривой семейства. Предел кратковременной прочности sb при со-
ответствующей температуре определяется известным стандартным способом. 
Значения материальных констант в общем случае будут зависеть от выбран-
ного конкретного материала и температуры испытания.

Параметр A в уравнении (3.2) определяется аналогичным способом, при 
этом эксперимент проводится в нейтральной среде. Учет влияния активной 
среды в уравнении (3.2) осуществляется с помощью введения в указанном 
соотношении функции ( )( ) ( ),1m mf c t a c t= + ⋅  определение константы a по-
дробно описано в работе [4]. Так, например, при определении длительной 
прочности образцов из низкоуглеродистой стали с учетом диффузии в образ-
цы кислорода из активной среды получено значение a = 9.5.

Характеристика материала C (в уравнении (4.1)) определяется на основе 
приравнивания значений теоретического и экспериментального времен до 
разрушения при испытании на ползучесть стандартного образца в нейтральной 
среде. Теоретическое время до разрушения t w* определяется интегрированием 
уравнения (4.1) до значения поврежденности w до значения w* = w(t  = t w*) = 1, 
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при таком расчете принимается значение f(cm(t )) = 1. Аналогичным образом 
интегрирование (4.3) проводится до значения W* = W(t  = t W*) = 1, при таком рас-
чете также используется значение f(cm(t )) = 1.

Отметим, что для получения качественных особенностей характеристик 
ползучести и различий накопления поврежденности при учете скалярного и 
векторного параметров можно принять некоторые модельные значения ука-
занных материальных констант.

Далее в настоящей статье рассмотрена программа нестационарного на-
гружения оболочки. Времена до разрушения определяются с использованием 
скалярного и векторного параметров поврежденности.

Примем следующую программу нестационарного нагружения. Сначала 
к рассматриваемой длинной тонкостенной цилиндрической оболочке при-
кладывается внутреннее давление Q  > 0 в течение времени 0 < t  ≤ t 1, примем 
t 1 = 0.5t 1* (где t 1* – время до разрушения рассматриваемой оболочки при дей-
ствии только этого внутреннего давления Q), при этом осевая растягивающая 
сила P  = 0. Затем в течение времени t 1 < t  < t * (где t * – время до разрушения 
оболочки в конце программы нагружения) к рассматриваемой оболочке при-
кладывается осевая растягивающая сила P  > 0, при этом внутреннее давление 
равно нулю (т.е. выполняются условия Q = 0, P  > 0). Схема нагружения обо-
лочки представлена на рис. 2. Будем называть такую программу раздельной 
программой нагружения.

Поскольку в соответствии с принятой схемой нагружения на каждой ста-
дии нагружения действует только один из видов нагрузки (второй вид нагруз-
ки равен нулю), то время до разрушения можно определить, используя с уче-
том (3.1) следующие выражения для интенсивности напряжений:
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где t w* – время до разрушения оболочки при использовании скалярного пара-
метра поврежденности.

Введем безразмерные напряжения:
	 zz zz bs = s s , bqq qqs = s s .

Получим выражение для интенсивности напряжений в безразмерном виде:

	 ( ) ( ) .2 2и
и zz zz

b
qq qq

s
s ≡ = s + s − s s

s
	 (4.2)

С учетом выражений (3.1.) для szz и sqq выразим
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SQ qqs = s  где .22S R= p

В безразмерном виде:
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Подставим полученное соотношение zz qqs = bs  в (4.2):

	 ( ) ( ) ( ) ( ) .2 2 2 2 21 1и qq qq qq qq qq qqs = bs + s − bs s = s b + − b = s b − b + 	 (4.3)

Здесь следует отметить, что при b = 0 и b = 1 (т.е. при P = 2pR2Q) значение 
su = sqq.

Определим интенсивность безразмерных напряжений на первой и второй 
стадиях нагружения.

Рассмотрим первую стадию нагружения (0 < t  ≤ t 1).
Поскольку на первой стадии нагружения на цилиндрическую тонкостен-

ную оболочку действует только внутреннее давление Q (при этом осевая сила 
P  = 0 равна нулю), то согласно выражению (4.3):

	 ( )1 20 0 0 0 1и
b b

RQ RQ
P

H H qq= → b = → s = − + = = s
s s

,

P

t1
– t–t *–

Q

t1
– t–

Рис. 2. Схема нагружения оболочки при раздельной программе нагружения.
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интенсивность безразмерных напряжений на первой стадии нагружения равна

	 ( )1
и

b

RQ
Hqqs = s =

s
.

На второй стадии нагружения 
_
t1 < 

_
t < 

_
t * к рассматриваемой оболочке при-

кладывается осевая растягивающая сила P  > 0, при этом внутреннее давление 
равно нулю (т.е. выполняются условия Q  = 0,  P  > 0), то согласно выражению 
(4.3):
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H H R Q R Q

R P QP
Q

H R R

P
Q

RH

 
s = b − b + = − + = s s p p 

 = − + s p p 

= → s = = s
p s

интенсивность безразмерных напряжений на второй стадии нагружения будет 
равна

	 ( ) .2

2u zz
b

P
RH

s = s =
p s

4.1. Определение времени до разрушения цилиндрической оболочки с использо-
ванием скалярного параметра поврежденности. Кинетическое уравнение (4.1) 
при использовании скалярного параметра поврежденности с учетом безраз-
мерной интенсивности напряжений (4.3) принимает следующий вид:

	 ( ) ( )( ) , ( ) .0 0
1

и
m

и

d dt C f c t
 s

w = w = ⋅ w =  − s 
 	 (4.4)

Проинтегрируем соотношение (4.4):

	 ( ) ( ) ( )( ) .
0

1

t
и

m
и

t C f c t dt
 s

w =   − s 
∫ 	 (4.5)

Определим 
_
t1

*– время до разрушения рассматриваемой оболочки при дей-
ствии только внутреннего давления Q. В этом случае при действии только 
Q осевая сила P  = 0 равна нулю, согласно выражению (4.3) интенсивность 
напряжений su будет равна

	 и
b

RQ
H qqs = = s

s
.

Тогда с учетом (4.5) и и
b

RQ
H qqs = = s

s
,
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	 ( ) ( )( ) .
0

t

m
b

RQ
t C f c t dt

H RQ
 w =  s −  ∫

Условием нахождения 
_
t1

* будет достижение параметром поврежденности 
значения
	 *( ) ,1 1tw =

	 ( )( )
*

*( ) .
1

1

0

1

t

m
b

RQ
t C f c t dt

H RQ
 w = = s −  ∫ .

С учетом линейного вида (3.3) функции f(cm(
_
t  )) (константу примем a = 9.5, 

это значение a получено при описании известных экспериментальных данных 
[4, 32]) определим время 

_
t1

*.
Как отмечалось ранее в данной статье, материальные константы моде-

ли в общем случае определяются на основе обработки экспериментальных 
данных. В рассматриваемом в статье случае для дальнейшего описания раз-
личий между скалярным и векторным подходом моделирования процессов 
разрушения можно принять некоторые модельные значения материальных 
параметров.

Примем значение C = const таким, чтобы .1
b

RQ
C

H RQ
  = s − 

Используем только первый этап диффузионного процесса. С учетом (2.5) 
получим:

	

*

** ( ) . .
1

1

0

1
1 9 5 1

3

t

t t dt
 w = w = + =  ∫

Отсюда 
_
t1

* = 0.422. Так как 
_
t1

* = 0.422 < 1, то использование только первого 
этапа диффузионного процесса (2.5) верно.

Таким образом, согласно принятой программе нагружения время разделе-
ния первой и второй стадий нагружения 

_
t1 определяется так: 

_
t1 = (1/2)

_
t1

* = 0.211.
Теперь определим время до разрушения оболочки при принятой раздель-

ной программе нагружения с учетом использования скалярного параметра по-
врежденности. Используем соотношение (4.5).

Рассмотрим первую стадию нагружения.
Накопление поврежденности на первой стадии нагружения w(1)(

_
t  ) будет 

определяться соотношением:

	 ( ) ( ) ( )( )
( )

( )
( )

.
1

1

1
0 1

t
и

m

и

t C f c t dt
 s w =
 − s 
∫

В конце первой стадии нагружения:

	 ( ) ( ) ( )( )
.( )

( )
. .

1 0 2111

1 1
0 0

1
1 9 5

31

t

и
m

bи

RQ
t C f c t dt C t dt

H RQ

 s     w = = +     s −   − s 
∫ ∫
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Используем значение C = (sbH – RQ)/RQ, полученное из условия 

.1
b

RQ
C

H RQ
  = s − 

 Тогда ( )
.

. . .
0 211

1

0

1
1 9 5 0 416

3
t t dt

 w = + =  ∫
На второй стадии нагружения поврежденность w(2)(

_
t  ) при использова-

нии скалярного характера ее накопления будет определяться следующим 
выражением:

	 ( ) ( ) ( ) ( )( )
( )

( )
( )

.
1

2
2

1 21

t
u

m

ut

t t C f c t dt
 s w = w +
 − s 
∫

Здесь использован тот факт, что поврежденность w(
_
t1), накопленная к мо-

менту времени 
_
t1 на первой стадии нагружения, учитывается и на второй ста-

дии нагружения.
Время до разрушения определяется из условия w* = w(2)(

_
t *) = 1:

	 ( ) ( ) ( ) ( )( )
*

( )
* ( ) *

( )
1

2
2

1 2
1

1

t
и

m

иt

t t C f c t dt
 s w = w = w + =
 − s 
∫ .

С учетом

	
( )

( ) , , . , ( ) .
2

1 12
0 211 0 416

21
u b

bu

H RQP
С t t

RH P RQ
s s −

= = = w =
p s −− s

получим:

	

( ) ( )

*

.

* *

. . ,

. . . .

0 211

3 3
2 2

1
0 416 1 9 5 1

2 3

19 19
0 416 0 211 0 211 1

2 9 9

t
b

b

b

b

H RQ P
t dt

RQ RH P

H RQ P
t t

RQ RH P

s −     + + =    p s −    

    s −      + + − + =     p s −        

∫

В полученное соотношение входят безразмерные константы, обозначим 
их:

	 , .
2

b

b

H RQ P
C С P

RQ RH P
s −

≡ = =
p s −

Тогда уравнение для нахождения времени до разрушения при учете ска-
лярного характера накопления поврежденности с учетом C и P будет иметь 
следующий вид:

	 ( ) ( )* * *. . .
3 3
2 2

19 19
0 416 0 211 0 211 1

9 9
CP t t

    
  w = + + − + =      

.	 (4.6)

Проанализируем полученное соотношение.
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Безразмерные параметры C и P задаются независимо друг от друга, по-
скольку внешние нагрузки Q и P задаются независимо друг от друга. Ука-
занные безразмерные параметры учитывают геометрические размеры тонко-
стенной цилиндрической оболочки и предельную характеристики материа-
ла – предела прочности при соответствующей температуре.

Согласно принятой гипотезе о накоплении повреждений для увеличе-
ния поврежденности на последующих стадиях нагружения произведение C P  
должно быть положительным.

При достижении величиной силы P предельного значения, равного 
Plim = 2pRHsb, при этом P  →  ∞, происходит мгновенное нарастание повре-
жденности w в соответствии с соотношением:

	 ( ) ( ) ( )( ) . . .
3 3

2 2 2
19 19

0 416 0 211 0 211
9 9

t CP t t
    

w = + + − +    
    

,	 (4.7)

и, как следствие, происходит мгновенное разрушение.
Данный вывод является физически и механически обоснованным и аде-

кватно отображается в проведенном моделировании с помощью применения 
в модели дробно-линейного кинетического соотношения накопления повре-
жденности, в которое входит предельное напряжение sb.

Структура соотношения 

	
lim2 b

P P
P

RH P P P
= =

p s − −
 

аналогична структуре, принятой дробно-линейной модели ползучести и дли-
тельной прочности: su /(sb – su).

Также необходимо отметить, что если при значении 
_
t  = 1 (время разделе-

ния этапов диффузионного процесса) в соотношении (4.7) величина повре-
жденности w(2)(

_
t  = 1) < 1 и разрушение еще не насупило, то при выводе соот-

ношения (4.6) следует учитывать также второй этап диффузионного процесса 
(2.5) при 

_
t  > 1.

В п. 4.3. статьи будет показан результат вычисления времени до разруше-
ния при использовании скалярного параметра поврежденности.

4.2. Определение времени до разрушения цилиндрической оболочки при исполь-
зовании векторного параметра поврежденности. Кинетические уравнения при 
учете векторного параметра поврежденности [35, 38] W примем в виде (4.3):

	
( )( ) ( )( ) ,

, ,
,

при 0

0 при 0

i b i m i
i i

i

C f c t
d dt i z

 ⋅ s s − s ⋅ s >W = W = = q
s ≤



где Wi – проекция вектора поврежденности на i-ю ось системы координат.
Критерием разрушения является достижение длиной W вектора W значе-

ния, равного единице:

	 ( ) ( )2 2
z qW = W + W , ( )0 0tW = = , ( )* * 1t tWW = W = = .
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В безразмерном виде кинетическое уравнение (4.3) будет иметь следующий 
вид:

	 ( ) ( )( ) ,
, ,

,

при 0
1

0 при 0

i
m i

ii i

i

C f c t
d dt i z

  s
⋅ ⋅ s >   − sW = W = = q  

 s ≤

 	 (4.8)

где i
i

b

s
s =

s
.

Очевидно, что принятая программа нагружения обеспечивает положитель-
ность компонентов тензора напряжений, поэтому далее для анализа кинети-
ки накопления повреждений будет использоваться только первое уравнение 
системы (4.8) для 

_
si > 0.

Проинтегрируем уравнение (4.8):

	 ( ) ( )( ) , ( ) ,
0 0

0 0
1

t t
i

i m i
i

d C f c t
 s

W = ⋅ W =  − s 
∫ ∫

	 ( ) ( )( ) ( ) .
0

1

t
i

i m
i

t C f c t dt
 s

W =   − s 
∫ 	 (4.9)

Время длительности первой стадии программы нагружения 
_
t1= (1/2)

_
t1

* = 0.211 
(где 

_
t1

* = 0.422) определяется аналогично п. 4.1. настоящей статьи. При этом 
вместо скалярного параметра поврежденности используется окружная компо-
нента Wq векторного параметра поврежденности (при Wz = 0), т.к. на первой 
стадии программы нагружения на рассматриваемую длинную оболочку без 
днищ действует только внутреннее давление.

Определим время до разрушения оболочки при принятой программе на-
гружения с учетом использования векторного параметра поврежденности.

Используем соотношение (4.9).
Рассмотрим первую стадию нагружения. На первой стадии на цилиндри-

ческую оболочку действует только внутреннее давление Q (при этом осевая 

сила P  = 0 равна нулю). В этом случае si ≡ sqq, Wz = 0 и ( )( ) .21 0 q qW = + W = W  
Накопление поврежденности на первой стадии нагружения W(1)(

_
t  ) определят-

ся соотношением:

	 ( ) ( )( ) ( ) ( ) ( ) .1

0
1

t

mt t C f c t dtqq
q

qq

 s
W = W =   − s 

∫
С учетом sqq = RQ/(sbH),

	 ( )( ) ( ) .
0

t

m
b

RQ
t C f c t dt

H RQq
 W =  s −  ∫

Аналогично примем значение C = const таким, чтобы 1
b

RQ
C

H RQ
  = s − 

.
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Тогда накопление поврежденности на первой стадии нагружения опреде-
лятся следующей зависимостью:

	 ( )( ) ( ) .
0

t

mt f c t dtqW = ∫
В конце первой стадии нагружения:

	 ( )
..

( ) ( ) . . .
1

0 2110 211 3
2

1

0 0 0

1 19
1 9 5 0 416

3 9

t

mt f c t dt t dt t tq

  W = = + = + =      
∫ ∫

Здесь использовался только первый этап диффузионного процесса, по-
скольку длительность первой стадии нагружения, равная 

_
t1 = 0.211, не превы-

шает время перехода между этапами диффузионного процесса, равного 
_
t0 = 1.

Таким образом, длина вектора поврежденности W в конце первой стадии 
нагружения определятся в следующем виде:

	 ( ) ( )( ) ( )( ) ( )( ) . .
2 21

1 1 1 1 0 416zt t t tq qW = W + W = W =

На второй стадии нагружения в материале цилиндрической оболочки уже 
есть накопленная на первой стадии поврежденность, которая характеризуется 
длиной вектора поврежденности на момент окончания первой стадии: W(

_
t1) = 

= Wq(
_
t1) = 0.416.

Т.к. при 
_
t  < 

_
t1 на цилиндрическую оболочку действует только осевая рас-

тягивающая сила P  > 0, при этом внутреннее давление равно нулю (т.е. 
выполняются условия Q = 0, P  > 0), то в этом случае si ≡ szz. Значение на-
копленной поврежденности от действия внутреннего давления на пер-
вой стадии нагружения W(1)(

_
t1) = Wq(

_
t1) = 0.416 на момент времени 

_
t1 так-

же сохраняется и на протяжении всей второй стадии. Таким образом, дли-
на вектора поврежденности на второй стадии нагружения определятся как 

( )( ) ( ) ( ) . , .22 2
10 416 приzt t t tW = W + >

Критерием разрушения является достижение длины вектора поврежден-
ности значения, равного единице:  W(2)(

_
t  *) = 1. То есть,

	 ( )*( ) . .
2 2 20 416 1z tW + =

Отсюда
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zzt
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∫

С учетом
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получаем:
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    s −      + − + =     p s −        

∫

В полученное соотношение входят безразмерные параметры, используем 
ранее введенное обозначение:

	 , .
2

b

b

H RQ P
C С P

RQ RH P
s −

≡ = =
p s −

Тогда уравнение для нахождения времени до разрушения при учете век-
торного характера накопления поврежденности будет иметь следующий вид:

	 ( ) ( )* * . . . .
3 3
2 2

19 19
0 211 0 211 0 909

9 9
CP t t

    
  + − + = 
    

	 (4.10)

В следующем п. 4.3. приведены результаты вычислений.
4.3. Результаты вычисления времен до разрушения оболочки с учетом скаляр-

ного и векторного параметров поврежденности. Анализ полученных результатов.
Результат вычисления времени до разрушения при использовании скаляр-

ного параметра накопления поврежденности.
Примем следующие значения безразмерных параметров C и P: C = P = 1. 

Тогда в соответствии с уравнением (4.6) время до разрушения с учетом ска-
лярного параметра поврежденности будет равно:

	 * * .0 614t tw≡ = .
Результат вычисления времени до разрушения при использовании вектор-

ного параметра накопления поврежденности.
Примем аналогично значения параметров C = P = 1. Тогда в соответствии 

с уравнением (4.10) время до разрушения с учетом векторного параметра по-
врежденности будет равно:
	 * * . .0 817t tW≡ =

Таким образом, время до разрушения при использовании векторного па-
раметра поврежденности превышает время до разрушения, полученное при 
использовании скалярного параметра поврежденности. Отношение времен 
до разрушения равно * * . .1 33t tW wξ = =

Проведенное исследование описывает различие в учете механизмов на-
копления повреждений при применении скалярного и векторного парамет-
ров поврежденности с использованием дробно-линейной модели ползучести 
и длительного разрушения при длительном высокотемпературном нагру-
жении в активной среде. Полученный результат подтверждает аналогичные 
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результаты, полученные авторами в статье [6] при исследовании длительного 
нестационарного нагружения пластины во взаимно ортогональных плоско-
стях. В указанной работе [6] отношения времен до разрушения * *t tW w  в зави-
симости от соотношения величин изгибающих моментов находятся в диапа-
зоне * * . . .1 15 1 39t tW w = −

В завершение статьи отметим, что предлагаемый подход может вполне ис-
пользоваться и при комбинированных программах нагружения, когда в тече-
ние одной стадии одновременно действуют нагрузки различного вида. Ска-
лярный подход позволяет аддитивно учитывать накопления поврежденности 
от каждого вида нагрузки как в пределах одной стадии, так и при переходе 
к последующей стадии. При векторном подходе накопленная поврежден-
ность на предыдущей стадии от определенного вида нагрузки учитывается в 
соответствующей компоненте вектора поврежденности на следующей стадии 
нагружения.

Заключение. Проведено исследование длительного разрушения длинной 
тонкостенной цилиндрической оболочки без днищ при ползучести в условиях 
нестационарного сложного напряженного состояния с учетом влияния актив-
ной окружающей среды. Влияние окружающей среды на ползучесть и дли-
тельную прочность оболочки определяется диффузионным проникновением 
элементов окружающей среды в материал оболочки. С помощью кинетиче-
ской теории Ю.Н. Работнова определены времена до разрушения оболочки, 
которые определяются при использовании дробно-линейной модели ползу-
чести и длительного разрушения. В рассматриваемую модель входит предел 
прочности материала при соответствующей температуре, имеющий роль пре-
дельного напряжения. Для учета накопления повреждений в процессе ползу-
чести и определения критерия до разрушения используются скалярный и век-
торный параметры поврежденности. Определены особенности использования 
дробно-линейной модели для описания процессов длительного разрушения.

В результате предлагаемого метода получены безразмерные времена до 
разрушения цилиндрической оболочки при длительном нестационарном на-
гружении в активной среде. Реальное размерное время до разрушения связа-
но с безразмерным посредством коэффициента диффузии активной среды и 
толщины цилиндрической оболочки. Проведено сравнение времен до разру-
шения при использовании скалярного и векторного параметров поврежден-
ности. Время до разрушения при использовании векторного параметра повре-
жденности превышает время до разрушения, полученное при использовании 
скалярного параметра поврежденности.

Настоящее исследование имеет фундаментальный характер для развития 
определяющих и кинетических соотношений в теории ползучести и дли-
тельной прочности материалов и элементов конструкций с учетом влияния 
активных сред. Также проведенное исследование имеет прикладной ас-
пект. Предлагаемые подходы и результаты исследования могут быть при-
менены в энергетической, химической и авиационно-космической отраслях 
промышленности.

Автор посвящает статью памяти своего учителя – профессора, д.ф.-м.н. 
Александра Михайловича Локощенко.
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ON THE APPLICATION OF A LINEAR FRACTIONAL MODEL IN THE 
PROBLEM OF LONG-TERM DESTRUCTION OF A CYLINDRICAL 
SHELL UNDER CREEP CONDITIONS IN AN ACTIVE MEDIUM
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аResearch Institute of Mechanics of Lomonosov Moscow State University, Moscow, Russia
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Abstract – The long-term destruction of a long thin-walled cylindrical shell during 
creep under conditions of a non-stationary complex stress state is studied, taking 
into account the influence of the active medium. The influence of the active medi-
um on the creep and long-term strength of the shell is determined by the diffusion 
penetration of medium elements into the shell material. Using the kinetic theory 
of Yu.N. Rabotnov determined the times to fracture of such a shell under unsteady 
loading. A singular linear fractional model of creep and long-term strength is used, 
in which the ultimate strength of the material at the appropriate temperature plays 
the role of the ultimate stress. To take into account the accumulation of damage 
during creep and determine the criterion before failure, scalar and vector damage 
parameters are used, while the components of the vector damage parameter are 
related to the space of principal stresses. To estimate the rate of the diffusion pro-
cess, an approximate method for solving the diffusion equation is used, based on 
the introduction of a diffusion front. Taking into account the influence of the me-
dium on the time to fracture is carried out by introducing a function of the integral 
average concentration into the constitutive and kinetic linear fractional relations. 
A comparison of times to fracture using scalar and vector damage parameters was 
carried out. The features of using a linear fractional model to describe processes of 
long-term destruction are determined.

Keywords: cylindrical shell, unsteady loading, creep, long-term destruction, linear 
fractional model, active medium, diffusion, diffusion front, scalar damage param-
eter, vector damage parameter
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