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На примере четырехмерных уравнений равновесия для кинетических 
напряжений в эйлеровых прямоугольных координатах показано, что 
оператор четырехмерного тензора деформаций Коши является сопря-
женным (транспонированным) к оператору уравнений равновесия. 
Такая же связь между операторами уравнений равновесия и тензора 
деформаций Коши имеет место и в трехмерном случае. Приведены три 
варианта вывода условий совместности деформаций Коши. В четырех-
мерном случае имеется 21 условие совместности, а трехмерном – шесть 
условий совместности Сен-Венана. Показано, что тензор деформаций 
Коши как в эйлеровых, так и в лагранжевых переменных полностью 
определяет деформированное состояние сплошной среды. При этом ни-
каких ограничений на величину смещений, деформаций или поворотов 
не требуется. Тензоры Лагранжа–Грина и Эйлера–Альманси, так назы-
ваемых больших или конечных деформаций, и смещения с помощью 
формул Чезаро выражаются через тензор деформаций Коши. Определя-
ющие соотношения упругой сплошной среды связывают взаимно одно-
значно тензор истинных напряжений Коши и тензор деформаций Коши. 
С использованием собственных базисов в пространствах симметричных 
тензоров напряжений и деформаций определяющие соотношения могут 
быть записаны в виде шести отдельных независимых уравнений, содер-
жащих функции только от одного аргумента. Для сплошных сред, име-
ющих кристаллографические симметрии, можно использовать базисы, 
полученные на основе обобщенного закона Гука.
Ключевые  слова: кинетические напряжения, тензоры деформаций и 
напряжений Коши, четырехмерная сплошная среда, лагранжевы и эй-
леровы переменные, условия совместности, тензоры Лагранжа–Грина и 
Эйлера–Альманси, формулы Чезаро, определяющие соотношения, соб-
ственные состояния
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1. Введение. Вопросы, связанные с построением определяющих соот-
ношений и различных тензоров деформаций и напряжений в нелинейной 
механике сплошной среды, являются актуальными и рассматриваются во 
многих работах, например [1–11]. Существуют многочисленные работы, 
в которых обсуждаются число независимых условий Сен-Венана, общность 
и полнота функций напряжений, постановки задачи теории упругости 



208	 Остросаблин

в напряжениях [12–16]. Ссылки на другие работы приведены в [12–15]. Ки-
нетические напряжения, четырехмерные деформации и уравнения равнове-
сия рассматривались в работах [2, 17–23]. Собственные базисы (состояния) 
применялись, например, в работах [9, 24–26]. В данной статье развиваются 
подходы, предложенные в работах [12–14, 22, 25–28], но к которым необяза-
тельно обращаться, чтобы понять излагаемые ниже результаты.

Для описания деформирования и движения сплошной среды будем исполь-
зовать прямоугольную декартову систему координат x1, x2, x3 и время t. Обозна-
чим x4 = ct, где c – некоторая постоянная, имеющая размерность скорости. При 
этом все четыре переменные xi, i = 1, 4, имеют одинаковую размерность длины. 
Пусть ai, i = 1, 4, означают начальные лагранжевы координаты точки сплошной 
среды, а xi, i = 1, 4, – эйлеровы координаты той же точки в конечном положе-
нии среды. Производные по координатам xi или ai, i = 1, 4, будем обозначать 
через ∂i, при этом ∂t = c∂4. Совокупность точек xi образует в четырехмерном 
пространстве область V, а точки с координатами ai составляют начальную об-
ласть V0. Деформирование (движение) сплошной среды задается как взаимно 
однозначное отображение областей V0 и V друг на друга [2, 22, 29, 30]: 
	 ( )    1 2 3 4 0, , , , ,i i ix x a a a a a V= ∈ 	 (1.1)

	 ( )        1 2 3 4, , , , , 1,4.i i ia a x x x x x V i= ∈ =

Функции в (1.1) вещественные, непрерывные и имеют все необходимые 
производные. Формулы (1.1) можно записать с использованием вектора ui, 
i = 1, 4, смещения [2, 22]: 
	 ( )    1 2 3 4 0, , , , ,i i i ix a u a a a a a V= + ∈ 	 (1.2)

	 ( )        1 2 3 4, , , , , 1,4.i i i ia x u x x x x x V i= − ∈ =

Формулу для скорости ( )4 4i t i i i iv u c u c x a= ∂ = ∂ = ∂ −  можно распространить 
на индекс i = 4: ( )4 4 4 4 4 4v c u c x a c= ∂ = ∂ − = , т.е. c – постоянная компонента 
скорости по четвертой координате x4 [22]. При вычислении компонент скоро-
сти vi, i = 1, 4, переменные ai считаются фиксированными постоянными [29].

2. Четырехмерные уравнения равновесия и деформации. В эйлеровых пря-
моугольных координатах xi, i = 1, 4, закон сохранения импульса и уравнение 
неразрывности могут быть записаны в виде четырехмерных уравнений рав-
новесия [2, 17–23] (по повторяющимся индексам проводится суммирование):

	 0,���, 1,�4.j ij iF i j∂ t + = = 	 (2.1)
В (2.1) Fi – компоненты вектора объемных сил, а tij = tji – кинетические 

напряжения [18, 19, 22], которые занумеруем одним индексом:
	 2 2 2

1 11 11 1 2 22 22 2 3 33 33 3,��� ,��� ,v v vt = t = s −r t = t = s −r t = t = s −r 	 (2.2)

	 ( ) ( )4 32 23 2 3 5 31 13 1 32 2 ,� 2 2 ,�v v v vt = t = s −r t = t = s −r

	 ( )6 21 12 1 22 2 ,v vt = t = s −r

	 ( ) ( )7 41 1 8 42 22 2 ,��� 2 2 ,cv cvt = t = −r t = t = −r
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	 ( ) 2
9 43 3 10 442 2 ,��� .cv ct = t = −r t = t = −r

Здесь sij = sji – трехмерный тензор напряжений Коши; r – плотность сплош-
ной среды.

С учетом обозначений (2.2) уравнения (2.1) записываются в виде:
	 ,0+ =C Ft 	 (2.3)
где 

	

1 3 2 4

2 3 1 4

3 2 1 4

1 2 3 4

1 1 1
0 0 0 0 0 0

2 2 2
1 1 1

0 0 0 0 0 0
2 2 2

1 1 1
0 0 0 0 0 0

2 2 2
1 1 1

0 0 0 0 0 0
2 2 2

 ∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 
 =
 ∂ ∂ ∂ ∂ 
 
 ∂ ∂ ∂ ∂ 
 

C 	 (2.4)

– матрица оператора уравнений равновесия (2.1), (2.3). По аналогии с уравне-
ниями трехмерной теории упругости [12–14, 31], транспонируя матрицу (2.4), 
получим четырехмерные деформации Коши [22] (штрих означает транспони-
рование матрицы):
	 ( ) / ,   , , ,   ,2 1 4ij ji j i i ju u i j ′e = e = ∂ + ∂ = = Ce u 	 (2.5)

где 

	 ' ,

1

2

3

3 2

3 1

2 1

4 1

4 2

4 3

4

0 0 0

0 0 0

0 0 0

1 1
0 0

2 2
1 1

0 0
2 2

1 1
0 0

2 2
1 1

0 0
2 2

1 1
0 0

2 2
1 1

0 0
2 2

0 0 0

∂ 
 ∂ 
 ∂
 
 ∂ ∂
 
 
 ∂ ∂
 
 
 = ∂ ∂ 
 
 ∂ ∂ 
 
 ∂ ∂ 
 
 ∂ ∂ 
 

∂  

C 	 (2.6)
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а деформации (2.5) занумерованы в порядке (2.2):

	 ,   ,   ,1 11 1 1 2 22 2 2 3 33 3 3u u ue = e = ∂ e = e = ∂ e = e = ∂ 	 (2.7)

	 ( ) ( ),   , 4 32 3 2 2 3 5 31 3 1 1 3
1 1

2 2
2 2

u u u ue = e = ∂ + ∂ e = e = ∂ + ∂

	 ( ) ,6 21 2 1 1 2
1

2
2

u ue = e = ∂ + ∂

	 ( ) ( ),   ,7 41 4 1 1 4 8 42 4 2 2 4
1 1

2 2
2 2

u u u ue = e = ∂ + ∂ e = e = ∂ + ∂

	 ( ) ,   .9 43 4 3 3 4 10 44 4 4
1

2
2

u u ue = e = ∂ + ∂ e = e = ∂

Из соотношений (2.1), (2.3)–(2.7) видно, что операторы (2.4), (2.6) уравнений 
равновесия и тензора деформаций Коши являются сопряженными (транспо-
нированными) [12–14, 31].

Если считать деформации ei заданными функциями, то соотношения (2.5), 
(2.7) будут десятью уравнениями для четырех смещений ui, i = 1, 4. Для того 
чтобы из переопределенной системы (2.7) можно было найти смешения ui, 
i = 1, 4, деформации ( )i ije e  должны удовлетворять некоторым дополнитель-
ным условиям совместности деформаций. Условия совместности можно по-
лучать несколькими способами, например, используя тензор Римана–Кри-
стоффеля [23, 29]. Другой способ состоит в выделении из системы (2.7) ли-
нейно независимых подсистем из четырех уравнений и вычислении затем 
окаймляющих миноров расширенных матриц. Из получившихся условий 
совместности выбирается полная система (базис) условий совместности. Для 
трехмерных деформаций eij этот способ был применен в работах [12–14].

3. Применение общего решения уравнений равновесия. Условия совместно-
сти деформаций можно получить, используя общие решения уравнений рав-
новесия (2.1), (2.3) или, что то же самое, представление напряжений (2.2) че-
рез функции (кинетических) напряжений. Решение однородных уравнений 
(2.1), (2.3) имеет вид [22]:
	 t = Bj,	 (3.1)
где ji, i = 1, 6 – произвольные функции, имеющие все необходимые производ-
ные, а B – матричные дифференциальные операторы, такие, что
	 ,   .0 0= =CB CBj 	 (3.2)
Тогда из (2.5), (3.2) получаем ,0′ ′ =B C  ,0′ ′ ′= =B B Cj u  при этом, очевидно, 
равенство B ′e = 0 будет условием совместности деформаций. В работе [22] 
приведен 141 вариант эквивалентных матриц B для четырехмерных уравне-
ний равновесия (2.1), (2.3), а в [12] приведены 17 вариантов эквивалентных 
матриц B для случая трехмерных уравнений равновесия. Приведем матрицы 
B, B′ для некоторых вариантов, номера матриц соответствуют номерам вари-
антов из работы [22]. Например, для варианта 1) матрицы B, B′ следующие:
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( ) ( ),

33 22 224 334 44

33 11 114

22 11 114

23

131 1

12

122 133 14

122

113

11

33 22 23

33 11 13

0

0 0 0

0 0 0

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 2 2

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0

∂ ∂ −∂ −∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 
− ∂ 
 

− ∂  ′= = − ∂ 
 ∂ ∂ − ∂
 
 − ∂
 

− ∂ 
 ∂ 

∂ ∂ − ∂

∂ ∂ − ∂

=

В В

;22 11 12

224 114 122 112

334 114 133 113

44 14 11

0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 2 2 0 0

0 0 0 0 2 0 2 0

0 0 0 0 0 2 0 0

 
 
 
 
∂ ∂ − ∂ 

 −∂ ∂ ∂ − ∂ 
 −∂ ∂ ∂ − ∂ 
 ∂ − ∂ ∂ 

для варианта 4):

	

( ) ( ),

33 22 44

33 11 44

22 11 44

23

134 4

12

14

24

34

11 22 33

33 22 23

33 11 13

22 11 1

0 0 0

0 0 0

0 0 0

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

0 0 0

0 2 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 2

∂ ∂ ∂ 
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 
− ∂ 
 

− ∂  ′= = − ∂ 
 − ∂
 
 − ∂
 

− ∂ 
 ∂ ∂ ∂ 

∂ ∂ − ∂

∂ ∂ − ∂

∂ ∂ − ∂
=

В В

;2

44 14 11

44 24 22

44 34 33

0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2

 
 
 
 
 
 ∂ − ∂ ∂ 
 ∂ − ∂ ∂ 
 ∂ − ∂ ∂ 
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для варианта 116):

( )

23

13

12

11 12 13 144 144 144

12 22 23 244 244 244116

13 23 33 344 344 344

234

134

124

123 123 123

2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

0 0 0 2 2 0 0

0 0 0 0 2 2 0

0 0 0 0 0 2 2

0 0 0 2 2 2

− ∂ 
 − ∂ 
 − ∂
 
− ∂ ∂ ∂ − ∂ ∂ ∂ 
 

∂ − ∂ ∂ ∂ − ∂ ∂
=  ∂ ∂ − ∂ ∂ ∂ − ∂
 ∂

 − ∂


− ∂
 ∂ ∂ ∂ 

В ( ),

.

116

23 11 12 13

13 12 22 23

12 13 23 33

144 244 344 234 123

144 244 344 134 123

144 244 344 124 123

2 0 0 0 0 0 0

0 2 0 0 0 0 0

0 0 2 0 0 0 0
2

0 0 0 2 0 0 2

0 0 0 0 2 0 2

0 0 0 0 0 2 2

 ′ =








 − ∂ −∂ ∂ ∂
 

− ∂ ∂ −∂ ∂ 
 

− ∂ ∂ ∂ −∂ =  −∂ ∂ ∂ − ∂ ∂ 
 ∂ −∂ ∂ − ∂ ∂ 
 ∂ ∂ −∂ − ∂ ∂ 

В

Матрицы B(1), B(4) соответствуют четырехмерным аналогам решения Макс-
велла [12, 14, 30], а B(116) является четырехмерным аналогом решения Мореры 
[12, 14, 30]. Другие аналоги этих решений приведены в работе [22]. Нетрудно 
проверить, что для приведенных выше матриц B уравнения (3.2) выполняют-
ся тождественно, а для деформаций (2.7) выполняются условия совместности 
B′e = 0.

Матрицы B(i), B( j) связаны соотношениями эквивалентности [22]:

	
( ) ( ) ,i j=B S B L 	 (3.3)

где S, L – невырожденные матрицы шестого порядка. Из (3.3) следует, что 
матрицы B(i)′, B( j)′ связаны соотношениями эквивалентности вида:

	 () )( .i j′ ′′ ′=S B L B 	 (3.4)
В работе [22] приведены примеры соотношений (3.3), из которых получают-
ся и соотношения эквивалентности (3.4). Чтобы получить все условия сов-
местности, нужно выписать все 141 вариант матриц B′ и вычислить еще по 
столбцам этих матриц коммутаторы. Из получившегося множества условий 
совместности выбрать минимальный базис (полную систему) условий сов-
местности. Для трехмерных деформаций (2.5), (2.7) этот способ реализован 
в работе [14].
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4. Получение условий совместности исключением смещений. Но наиболее 
простой способ получения условий совместности, исходя из определения де-
формаций (2.5), состоит в исключении смещений. Из (2.5) находим:

	 ( ) ( ),   ,1 1
2 2ij kl kij l lij k kl ij ikl j jkl iu u u u∂ e = ∂ + ∂ ∂ e = ∂ + ∂

складываем эти выражения:

	 ( ) ( )1 1
2 2ij kl kl ij kij l ikl j lij k jkl iu u u u∂ e + ∂ e = ∂ + ∂ + ∂ + ∂ = 	 (4.1)

	 ( ) ( ) .1 1
2 2kij l jkl i lij k ikl j ik jl jl ik jk il il jku u u u= ∂ + ∂ + ∂ + ∂ = ∂ e + ∂ e = ∂ e + ∂ e

Так как в правой части (4.1) слагаемые можно объединить двумя способами, 
то из (4.1) имеем два равносильных варианта записи условий совместности 
деформаций:
	 ,0ijkl ij kl kl ij ik jl jl ikP = ∂ e + ∂ e − ∂ e − ∂ e = 	 (4.2)
	 ,   , , , , , , ,0 1 2 3 4ijkl ij kl kl ij jk il il jkS i j k l= ∂ e + ∂ e − ∂ e − ∂ e = = …

Второй вариант (4.2) для трехмерного случая приведен в работе [30]. Еще один 
вариант записи условий совместности деформаций (2.5) получим, вычитая 
выражения (4.2):
	 .0ijkl jk il il jk ik jl jl ikA = ∂ e + ∂ e − ∂ e − ∂ e = 	 (4.3)
Таким образом, условия совместности (4.2), (4.3) следуют из определения де-
формаций (2.5) путем исключения смещений (функций) ui, при этом не ну-
жен никакой тензор кривизны [23, 29] и антисимметричный тензор wij = (∂j ui – 
– ∂i uj)/2, хотя далее при определении смещений тензор wij будет нужен.

Выражения (4.2), (4.3) равносильны и отличаются только расположением 
индексов: Aijkl = Pjkli = Sjkil. Выражение Aijkl (4.3) имеет симметрию индексов как 
в работах [16, 29]:
	       , , ,klij ijkl jikl ijkl ijlk ijklA A A A A A= = − = − 	 (4.4)
и это выражение несколько удобнее, чем выражения (4.2). Кроме равенств 
(4.4), выполняется еще равенство [32]:
	 ,0ijkl iklj iljkA A A+ + =

которое не является ограничением на условия совместности (4.3) (ср. с [16]). 
В работах [32, 33] обсуждаются условия совместности и дано некоторое обоб-
щение деформаций Коши (2.5) на многомерную среду. Условия (4.3), полу-
ченные исключением смещений ui из уравнений (2.5), очевидно, являются 
необходимыми, но их достаточность или полнота будут понятны при опреде-
лении смещений в односвязной области [14, 32].

5. Преобразование системы координат и явный вид условий совместности. 
Рассмотрим тензор Aijkl с симметрией (4.4). При ортогональном преобразова-
нии системы координат (dpq – единичная матрица, символ Кронекера)
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	 , ,   ,   , , , , , , ,ˆ ˆ  1 2 3 4i ij j j ij i ip iq pqx x x x i j p q= a = a a a = d = 	 (5.1)
тензор Aijkl преобразуется по формулам:
	 ,  ˆ ˆ .ijkl ip jq pqrs kr ls pqrs ip jq ijkl kr lsA A A A= a a a a = a a a a 	 (5.2)
Вместо (5.1) в четырехмерном пространстве xi, i = 1, 4, могут быть применены 
преобразования Лоренца [34].

Перепишем (5.2) с учетом антисимметрии (4.4):

	 ( ) ( ) , ˆ ˆ1 1
2 2ijkl ip jq iq jp pqrs kr ls ks lr ijpq pqrs klrsA A A= a a − a a a a − a a = a a

	 ˆ ,pqrs ijpq ijkl klrsA A= a a

где обозначили ( ) / ,2ijpq ip jq iq jpa = a a − a a  причем

	 ( ),   ,   .1
2jipq ijpq ijqp ijpq ijpq ijrs pr qs ps qr pqrsa = −a a = −a a a = d d − d d = d

Тензор pqrsd  имеет симметрию (4.4) и является единичным в пространстве 
тензоров вида (4.4). Если tji = –tij, то pqrs rs pqt td = .

Для постоянного тензора вида (4.4) можно поставить задачу на собствен-
ные значения и тензоры [16]:
	 ( ),   .2 2 0ijkl kl ij ijkl ijkl klA t t A t= l − ld = 	 (5.3)
Запишем антисимметричный тензор tij = –tji:

	 ,

21 31 41

21 32 42

31 32 43

41 42 43

0

0

0

0

ij

t t t

t t t
t

t t t

t t t

− − − 
 − − =
 −
 
 

	 (5.4)

который имеет шесть независимых компонент. С учетом (4.4), (5.4) распишем 
уравнение (5.3):
	 21 21 21 31 31 31 32 32 322[( 2 ) 2( ) 2( )ij ij ij ij ij ijA t A t A t− ld + − ld + − ld +   	 (5.5)

	 ( ) ( ) ( ) ] .41 41 41 42 42 42 43 43 432 2 2 0ij ij ij ij ij ijA t A t A t+ − ld + − ld + − ld =  

Все ненулевые компоненты тензора ijkld  в (5.5) имеют значения 1/2. Далее в 
(5.5) нужно придавать все значения индексам i, j. Если i = j, то уравнения ну-
левые, если i  ≠ j, то уравнения с индексами ij и ji отличаются знаком. Таким 
образом, из (5.5) получаем однородную систему уравнений:
	 ( ) ,2121 21 2131 31 2132 32 2141 41 2142 42 2143 43 0A t A t A t A t A t A t− l + + + + + =

	 ( ) ,3121 21 3131 31 3132 32 3141 41 3142 42 3143 43 0A t A t A t A t A t A t+ − l + + + + =

	 ( ) ,3221 21 3231 31 3232 32 3241 41 3242 42 3243 43 0A t A t A t A t A t A t+ + − l + + + = 	 (5.6)
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	 ( ) ,4121 21 4131 31 4132 32 4141 41 4142 42 4143 43 0A t A t A t A t A t A t+ + + − l + + =

	 ( ) ,4221 21 4231 31 4232 32 4241 41 4242 42 4243 43 0A t A t A t A t A t A t+ + + + − l + =

	 ( ) ,4321 21 4331 31 4332 32 4341 41 4342 42 4343 43 0A t A t A t A t A t A t+ + + + + − l =

для определения собственных значений l и тензоров tij (5.4). Матрица систе-
мы симметрическая, и ее характеристическое уравнение имеет шесть дей-
ствительных корней li, i = 1, 6. В работе [16] по аналогии с классификацией 
тензоров четвертого ранга модулей упругости [26] проведена классификация 
тензоров вида (4.4) в зависимости от числа различных собственных значений 
li и их кратностей. В трехмерном случае уравнения (5.6) принимают вид:
	 ( ) ,2121 21 2131 31 2132 32 0A t A t A t− l + + =

	 ( ) ,3121 21 3131 31 3132 32 0A t A t A t+ − l + = 	 (5.7)

	 ( ) .3221 21 3231 31 3232 32 0A t A t A t+ + − l =

Перепишем выражение (4.3):
	 ( )ijkl jk ip lq il jp kq ik jp lq jl ip kq pqA = ∂ d d + ∂ d d − ∂ d d − ∂ d d e = 	 (5.8)

	 ( )ln ln .0jm kn ip lq im jp kq im kn jp lq jm ip kq mn pq= d d d d + d d d d − d d d d − d d d d ∂ e =

Запись (5.8) аналогична трехмерной записи [12, 30, 32]:
	 ,0imp jnq mn pqe e ∂ e = 	 (5.9)
где eimp – антисимметричный по любой паре индексов символ Леви–Чевиты. 
Но в (5.8) и (5.9) вообще-то для строгой записи еще нужно проводить симмет-
ризацию коэффициентов по индексам (mn) и (pq). Поэтому удобнее выписы-
вать условия совместности деформаций непосредственно по (4.3) в соответ-
ствии с симметричной матрицей в уравнениях (5.6) или (5.7).

Итак, из (4.3), (5.7) получаем:
	 ,2121 1221 12 21 21 12 22 11 11 22 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,3121 1321 12 31 31 12 32 11 11 32 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,3221 2321 22 31 31 22 32 21 21 32 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e = 	 (5.10)

	 ,3131 1331 13 31 31 13 33 11 11 33 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,3231 2331 23 31 31 23 33 21 21 33 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 .3232 2332 23 32 32 23 33 22 22 33 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

Формулы (5.10) являются условиями Сен-Венана для трехмерных деформа-
ций [30]. В четырехмерном случае к шести уравнениям (5.10) добавляются еще 
15 условий в соответствии с (4.3), (5.6):
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	 ,4121 1421 12 41 41 12 42 11 11 42 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4221 2421 22 41 41 22 42 21 21 42 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4321 3421 32 41 41 32 42 31 31 42 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4131 1431 13 41 41 13 43 11 11 43 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4231 2431 23 41 41 23 43 21 21 43 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4331 3431 33 41 41 33 43 31 31 43 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4132 1432 13 42 42 13 43 12 12 43 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4232 2432 23 42 42 23 43 22 22 43 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e = 	 (5.11)

	 ,4332 3432 33 42 42 33 43 32 32 43 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4141 1441 14 41 41 14 44 11 11 44 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4241 2441 24 41 41 24 44 21 21 44 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4341 3441 34 41 41 34 44 31 31 44 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4242 2442 24 42 42 24 44 22 22 44 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 ,4342 3442 34 42 42 34 44 32 32 44 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

	 .4343 3443 34 43 43 34 44 33 33 44 0A A= − = ∂ e + ∂ e − ∂ e − ∂ e =

Уравнения (5.10), (5.11) с учетом обозначений (2.7) можно записать в виде 
Qe = 0, где дифференциальная матрица Q размера 21 × 10, а в трехмерном слу-
чае (5.10) – размера 6 × 6. В трехмерном случае матрица Q имеет ранг 3, и де-
формации ei (решение системы (5.10)) выражаются через три произвольные 
функции (смещения) ui [13]. В четырехмерном случае матрица Q будет ранга 
4, и решение системы (5.10), (5.11) выражается через четыре функции (сме-
щения) ui по формулам Коши (2.5). Уравнения (5.10), (5.11) образуют полную 
систему (минимальный базис) условий совместности, т.е. QC′ = 0, и если для 
некоторого Q1 выполняется QC′ = 0, то найдется матрица S такая, что Q1 = SQ 
[14]. Число уравнений (5.10) или (5.10), (5.11) нельзя уменьшить, все они 
должны быть выполнены, все они являются существенными [14], в отличие 
от утверждения в работе [16]. Но в четырёхмерном случае в силу тождества 
Риччи [32] A4321 + A4213 + A4132 = 0 одно из условий выполняется автоматически, 
т.е. необходимо выполнить только 20 условий (5.10), (5.11).

Отметим, что формулы Коши (2.5) служат определением деформаций eij, 
которые тождественно удовлетворяют уравнениям (5.10), (5.11) при произ-
вольных функциях ui, а уравнения (5.10), (5.11) являются необходимыми и 
достаточными условиями, обеспечивающими существование таких функ-
ций ui. В свою очередь, формулы (3.1) служат определением напряжений tij 
(в трехмерном случае – sij [12]), которые тождественно удовлетворяют урав-
нениям равновесия (2.1), (2.3) при произвольных функциях ji, а уравнения 
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равновесия являются необходимыми и достаточными условиями, обеспечива-
ющими существование таких функций ji [22]. Поэтому в механике сплошной 
среды нет необходимости решать уравнения равновесия (2.1), (2.3) и условия 
совместности (5.10), (5.11), а следует исходить из определения напряжений tij 
и деформаций eii в виде (3.1) и (2.5). Функции ji и ui, входящие в выражения 
для напряжений (3.1) и деформаций (2.5), связаны между собой только через 
определяющие соотношения (уравнения состояния) [12–14, 22, 35].

6. Выражение больших деформаций и смещений через деформации Коши. 
Перейдем к рассмотрению так называемых больших или конечных деформа-
ций. С учетом (1.2) находим дифференциал функции ui(xj):
	 ( ) ,i j i j ij ij jdu u dx dx= ∂ = e + w 	 (6.1)
где

	 ( ) ( ),   1 1
2 2ij j i i j ij j i i ju u u ue = ∂ + ∂ w = ∂ − ∂

– симметричная и кососимметричная части градиента смещений ∂j ui. Далее 
получаем:
	 ( )( ) 2i i i i i i i i i i i ida da dx du dx du dx dx du dx du du= − − = − + =

	 ( ) ;2 2i i j i i j i k j k i j i i ij i k j k i jdx dx u dx dx u u dx dx dx dx u u dx dx= − ∂ + ∂ ∂ = + − e + ∂ ∂

	 ( ) .2i i i i ij i k j k i jdx dx da da u u dx dx− = e − ∂ ∂ 	 (6.2)
Так как i k ki kiu∂ = e + w , j k kj kju∂ = e + w , то перепишем (6.2):

	 ( )( ) ,2 2i i i i ij ki ki kj kj i j ij i jdx dx da da dx dx e dx dx − = e − e + w e + w = 
где обозначили

( )( ) ( ).2 2 2ij ij ki ki kj kj ij ki kj ki kj kj ki ki kje = e − e + w e + w = e − e e + w e + w e + w w 	 (6.3)

Выражение (6.3) есть тензор деформации Эйлера–Альманси [30, 32], через 
него выражается изменение длины малого элемента (6.2) при деформирова-
нии сплошной среды.

Если точки xi, xi0 принадлежат области V (1.2), то при известных eij, ui(x0) 
по (6.1) можно определить смещения ui(x):

	 ( )( ) ( ) .
0 0

0

i

i

x x

i i i ij ij j

x x

du u x u x dx= − = e + w∫ ∫ 	 (6.4)

Необходимым и достаточным условием независимости интеграла (6.4) от пути 
интегрирования является условие:
	 ( ) ( ) ,k ij ij j ik ik∂ e + w = ∂ e + w 	 (6.5)

которое выполняется тождественно в силу соотношения [30, 32]:
	 .k ij j ik i jk∂ w = ∂ e − ∂ e 	 (6.6)
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Для wij имеем формулу [30]:

	 ( )() )(
0 0

00

x x

ij ij ij ij k ij k

x x

x d x dxxw = w + w = w + ∂ w∫ ∫

или с учетом (6.6):

	 ( ) ( ) ( ) .
0

0

x

ij ij j ik i jk k

x

x x dxw = w + ∂ e − ∂ e∫ 	 (6.7)

Интеграл (6.7) не зависит от пути интегрирования, если выполняется необ-
ходимое и достаточное условие (условия совместности (4.3) или (5.10), (5.11)) 
[32]:
	 .lj ik li jk kj il ki jl∂ e − ∂ e = ∂ e − ∂ e 	 (6.8)

Далее с учетом (6.4), (6.7) получаем:

	 ( ) ( ) ( ) ( )
0

0

0 0

x
x

i i ij ij j ik i jk k jx
x

u x u x x dx dx = + e + w + ∂ e − ∂ e =  ∫ ∫

	 ( ) ( )( ) ( ) .
0

0

0 0 0

x
x

i ij j j ij j ik i jk k jx
x

u x x x x dx dx = + w − + e + ∂ e − ∂ e  ∫ ∫ 	 (6.9)

Формула Чезаро [30, 32] (6.9) дает выражение смещений ui(xs) через дефор-
мации Коши eij (2.5), при выполнении условий совместности (6.8), причем 
никакой малости ui(xs), eij(xs), wij(xs) не предполагается.

Из формул (6.3), (6.7) очевидно, что тензор Эйлера–Альманси 2eij впол-
не определяется деформациями Коши eij (2.5). Зная смещения ui(xs) (6.9), по 
формуле (1.2)
	 ( )    ,i i i s sa x u x x V= − ∈

получим координаты ai  ∈  V0 точек тела до деформации. Если в (6.7), (6.9) де-
формации Коши равны нулю eij = 0, то остаются только смещения и инфини-
тезимальные повороты тела как жесткого целого [12, 30, 32] в окрестности 
точки x0:
	 ( ) ( ) ( ) ( ) ( )( ),   ,0 0 0 0ij ij i i ij j jx x u x u x x x xw = w = + w −

при этом деформации (6.3) вообще-то не нулевые:
	 ( ) ( ).0 02 ij ki kj ki kje x x= −w w = −w w

Но если среда в точке xj0 закреплена, то wij(x0) = 0 и eij = 0.
Аналогичные формулы можно получить в случае лагранжевых переменных 

ai. Из первой формулы (1.2) находим dxi = dai + dui, где
	 ( ) ,i j i j ij ij jdu u da da= ∂ = e + w 	 (6.10)
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	 ( ) ( ),   ,1 1
2 2ij j i i j ij j i i ju u u ue = ∂ + ∂ w = ∂ − ∂

здесь уже производные по лагранжевым переменным aj. Далее получаем:
	 ( )( ) 2i i i i i i i i i i k kdx dx da du da du da da du da du du= + + = + + =

	 ( )2 2 ;i i j i i j i k j k i j i i ij i k j k i jda da u da da u u da da da da u u da da= + ∂ + ∂ ∂ = + e + ∂ ∂

	 ( ) ,ˆ2 2i i i i ij i k j k i j ij i jdx dx da da u u da da e da da− = e + ∂ ∂ = 	 (6.11)

где обозначили
	 ˆ2 2ij ij i k j ke u u= e + ∂ ∂

– тензор деформации Лагранжа–Грина [2, 30], который можно записать ана-
логично (6.3):

( )( ) .ˆ2 2 2ij ij ki ki kj kj ij ki kj ki kj kj ki ki kje = e + e + w e + w = e + e e + w e + w e + w w 	(6.12)

Через тензор (6.12) выражается изменение длины малого элемента (6.11) в ла-
гранжевых переменных ai. Геометрическая интерпретация компонент îje  или 
eij приведена, например, в работах [2, 30].

Формулы (6.4)–(6.9) полностью повторяются для случая лагранжевых 
переменных ai. Итак, имеем с учетом (6.10) (точки ai, ai0 принадлежат области 
V0 (1.2)):

  ( ) ( ) ( ) ( ) ( ) .
0 0 0

0 0 0

a a a

i i i i j i j i ij ij ja a a
u a u a du u a u da u a da= + = + ∂ = + e + w∫ ∫ ∫ 	 (6.13)

Интеграл (6.13) не зависит от пути интегрирования, если выполняется необ-
ходимое и достаточное условие (6.5), которое будет тождеством в силу соот-
ношения (6.6). Для wij имеем формулу:

	
( ) ( ) ( )

0 0

0 0

a a

ij ij ij ij k ij k

a a

a a d a daw = w + w = w + ∂ w∫ ∫
или с учетом (6.6):

	 (( ) ( ) ) .
0

0

a

ij ij j ik i jk k

a

da aaw = w + ∂ e − ∂ e∫ 	 (6.14)

Интеграл (6.14) не зависит от пути интегрирования, если выполняются необ-
ходимые и достаточные условия совместности (6.8).

Далее с учетом (6.14) из (6.13) находим:

	
0 0

0 0( ) ( ) ( ) ( )
a a

i i ij ij j ik i jk k j
a a

u a u a a da da
 

= + e +w + ∂ e −∂ e = 
  
∫ ∫ 	 (6.15)
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( ) ( )( ) ( ) .

0 0

0 0 0

a a

i ij j j ij j ik i jk k j

a a

u a a a a da da
 
 = + w − + e + ∂ e − ∂ e
 
 
∫ ∫

Формула (6.15) дает выражение смещений ui(as) через деформации Коши eij, 
при выполнении условий совместности (6.8), причем никакой малости ui(as), 
eij(as), wij(as) не предполагается. Из формул (6.12), (6.14) очевидно, что тензор 
Лагранжа–Грина 2êij вполне определяется деформациями Коши eij (2.5). Зная 
смещения ui(as) (6.15), по формуле (1.2)
	 ( ),   0si i i sx a Vau a= + ∈

получим координаты xi  ∈  V точек тела после деформации. Если в (6.14), (6.15) 
деформации eij нулевые, то остаются только смещения и инфинитезимальные 
повороты тела как жесткого целого в окрестности точки a0, при этом дефор-
мации (6.12) не нулевые:
	 ( ) ( ).ˆ 0 02 ij ki kj ki kje a a= w w = w w

Но если среда в точке aj0 закреплена, то wij(a0) = 0 и êij = 0.
Таким образом, учитывая выше изложенное, можно заключить, что как 

в эйлеровых переменных xi, так и в лагранжевых переменных ai деформиро-
ванное состояние сплошной среды полностью определяется деформациями 
Коши eij (2.5). При этом никакой малости деформаций eij, а также ui, wij не 
предполагается. Такой подход к описанию деформирования сплошной среды 
в случае эйлеровых переменных предложен в работах [27, 28]. Отметим, что 
аналогичный подход несколько лет назад предлагал научный сотрудник лабо-
ратории статической прочности Института гидродинамики им. М.А. Лаврен-
тьева СО РАН И.В. Сухоруков, к сожалению, рано умерший.

7. Определяющие соотношения упругой среды. Так как деформации Коши eij 
(2.5) вполне задают кинематику сплошной среды, то определяющие соотно-
шения для упругих материалов должны взаимно однозначно связывать истин-
ные напряжения [1, 3, 11] tij = tji (или sij = sji в трехмерном случае) с деформа-
циями eij = eji (2.5). При этом нет необходимости в построении усложненных 
теорий так называемых больших или конечных деформаций. В работе [22] 
предложена линейная связь кинетических напряжений (2.2) с четырехмер-
ными деформациями (2.7): t = Ae, где A′ = A – симметричная невырожденная 
матрица.

В пространстве симметричных тензоров второго ранга в трехмерном случае 
может быть выбран ортонормированный базис из шести тензоров [24–26]. 
С учетом одноиндексных обозначений вида (2.2), (2.7) этот базис записывает-
ся в виде ортогональной матрицы шестого порядка: T = [tip], i, p = 1, 6, tiptiq = dpq 
[25]. Каждый столбец этой матрицы соответствует симметричному тензору 
второго ранга. Ортогональная матрица tip зависит от 15 свободных парамет-
ров и может быть получена процессом ортонормирования произвольной тре-
угольной матрицы cip, i > p, c11 = ... = c66 = 1 [25, 34].

Тензоры напряжений sij и деформаций eij раскладываются по ортогональ-
ному базису tip [24–26]:
	 ,   ,   ,   .i ip p p i ip i iq q q i iqt t t ts = s s = s e = e e = e   	 (7.1)
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Из (7.1) видно, что величины ,p qs e  являются проекциями тензоров si, ei на 
тензоры ортогонального базиса tip, p = 1, 6, т.е. оказываются свертками двух 
симметричных тензоров второго ранга. Это означает, что величины ,p qs e  
остаются инвариантными при ортогональном преобразовании вида (5.1) си-
стемы координат xi. Если в (7.1) базис является единичной матрицей, т.е. 
tip = dip, то, очевидно, традиционные напряжения p i ip ps = s d = s  и деформа-
ции q i iq qe = e d = e  также являются инвариантами [25]. 

Определяющие соотношения должны функционально связывать инвари-
анты ps  и qe , т.е.
	 ( ),   , , ,1 6p p qf p qs = e =

	 (7.2)

где функции fp в общем случае определяются экспериментально. Выбор бази-
са tip произволен, как и системы координат xi, которые выбираются из сооб-
ражений простоты уравнений. Для случая упругих анизотропных материалов 
матрица tip состоит из шести собственных состояний, а закон Гука принимает 
вид шести отдельных независимых инвариантных равенств [24–26]:
	 ,   ,   ,   ,   ,   ,1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6s = l e s = l e s = l e s = l e s = l e s = l e           	 (7.3)
где li > 0, i  = 1, 6 – собственные модули.

Произвольный базис tip можно получить из какого-то конкретного по фор-
мулам [25]:
	 * *,   ,ip iq pq iq ip pqt t t t= a = a 	 (7.4)
где apq – произвольная ортогональная матрица шестого порядка: apqapr = dqr, 
также определяется 15 независимыми параметрами. Выбираем базис tip таким 
образом, чтобы определяющие соотношения (7.2) приняли наиболее простой 
вид (например, были вида (7.3)):

( ) ( ) ( ) ( ) ( ) ( ),  ,  ,  ,  ,  ,1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6f f f f f fs = e s = e s = e s = e s = e s = e           	 (7.5)
т.е. каждая функция зависела бы от одной переменной. Такой базис можно 
назвать собственными состояниями [24–26], которые характеризуют каждый 
конкретный материал (среду), а традиционный базис tip = dip, никак не связан-
ный с конкретным материалом, определяется только внешней координатной 
системой xi. Отметим, что в определяющих соотношениях (7.3), (7.5) не пред-
полагается малость деформаций Коши (2.5). Но экспериментально следует 
проверять – для конкретных материалов, при каких деформациях eij линейные 
соотношения (7.3) переходят в нелинейные соотношения вида (7.5). В рабо-
те [28] на основе экспериментальных данных для случая изотропии обосно-
вывается справедливость закона Гука при любых стадиях деформирования 
и говорится о фундаментальности закона Гука аналогично второму закону 
Ньютона о пропорциональности силы ускорению. Запись закона Гука в виде 
(7.3) показывает пропорциональность напряжений (сил) ps  деформациям pe  
с коэффициентами пропорциональности lp, p = 1, 6. Можно предположить, 
что соотношения (7.3) (или (7.5)) выполняются при любых стадиях дефор-
мирования. Для проверки этой гипотезы необходимо для конкретных матери-
алов известные экспериментальные данные с учетом собственных состояний 
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и модулей представить в виде (7.3) или (7.5) либо проводить дополнительные 
эксперименты. Но все это может быть предметом дальнейшей работы.

Для изотропного материала собственные состояния tip и модули lp оказы-
ваются следующими [24, 26, 36]:

	

/ / /

/ / /

/ / ,

1 3 1 6 1 2 0 0 0

1 3 1 6 1 2 0 0 0

1 3 2 6 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

ipt

 −
 

− − 
 
 =
 
 
 
 
 

	 (7.6)

	 ,   ,1 2 3 4 5 63 2 2l = l + m l = l = l = l = l = m

где l, m – постоянные Ламе [3, 30]. В (7.6) собственные состояния, соответ-
ствующие пятикратному собственному модулю l2, взяты не в общем виде. 
В общем случае эти состояния являются любыми девиаторами, ортогональ-
ными к ti1:

	 ( ) ,   , .1 1 2 3
1

0 2 6
3

i ip p p pt t t t t p= + + = =

Для других материалов, имеющих кристаллографические симметрии, соб-
ственные модули и состояния приведены в работе [36]. Так как при ортого-
нальных преобразованиях вида (5.1) системы координат шаровой тензор и де-
виаторы сохраняют свой вид, то с учетом (7.6) закон Гука (7.3) для изотропно-
го материала может быть записан в виде:

	 ( ) ,   .1 1
3 2 2

3 3kk kk ij kk ij ij kk ij
 s = l + m e s − s d = m e − e d 
 

Отметим, что если матрица модулей упругости в законе Гука не является сим-
метричной или положительно определенной, то собственные состояния (ба-
зисы) в пространствах напряжений и деформаций оказываются различными 
[37].

В краткой записи закон Гука (7.3) имеет вид T ′s = LT ′e, где L – диаго-
нальная матрица. Подставляя в последнее равенство определение напряже-
ний через функции напряжений s = Bj и деформаций (2.5) через смещения, 
получим шесть дифференциальных уравнений [12–14, 22, 35]
	 T ′Bj = LT ′C ′u

для шести функций j1, j2, j3, u1, u2, u3. Аналогичные уравнения будут иметь 
место для кинетических напряжений (3.1) в четырехмерном случае [22].

Примеры решения задач равновесия при больших деформациях с исполь-
зованием деформаций Коши eij (2.5) в конечной области V и определения 
начальной области тела V0 приведены в работах [27, 28]. В эйлеровых пере-
менных задача растяжения изотропного стержня при конечных деформациях 
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решена в работе [38] с использованием закона Гука, записанного в диффе-
ренциальной форме.

8. Заключение. Таким образом, в работе представлен новый подход к урав-
нениям теории упругости. Показано, что деформированное состояние сплош-
ной среды при любых деформациях полностью определяется линейным тен-
зором деформаций Коши. В четырехмерном и трехмерном случаях диффе-
ренциальные операторы тензора деформаций Коши и уравнений равновесия 
являются сопряженными (транспонированными по отношению друг к другу). 
Различными способами можно получать условия совместности деформаций. 
Напряжения, аналогично деформациям, выраженным через смещения, могут 
быть определены через функции напряжений, при этом уравнения равнове-
сия выполняются тождественно, а также являются условиями совместности, 
обеспечивающими существование функций напряжений. Функции напря-
жений и смещения связаны между собой через определяющие соотношения. 
Определяющие соотношения путем нахождения (подбора) характерного для 
конкретного материала собственного базиса в пространствах симметричных 
тензоров напряжений и деформаций могут быть записаны в трехмерном слу-
чае в виде шести отдельных независимых уравнений, содержащих функции 
только от одного аргумента. Таким определяющим соотношениям необходи-
ма еще экспериментальная проверка.

После того как данная статья была подготовлена, опубликованы работы 
[39–42], в которых рассматриваются вопросы, близкие по тематике. Отме-
тим, что вопрос о числе условий совместности и числе функций напряжений 
в трехмерном и четырехмерном случаях решен в работах [12–14, 22] и в дан-
ной работе. Связь уравнений теории упругости с теорией относительности, 
с уравнениями гравитации и электродинамики рассматривалась, например, 
в работах [20, 21, 39, 42] и некоторых других.

Отметим еще заметку [43], в которой показывается, что условия совместно-
сти деформаций Коши вида (4.3) или (5.9) являются условиями совместности 
и для нелинейного тензора деформаций Лагранжа–Грина (6.12), т.е. тензор 
Римана–Кристоффеля преобразуется виду к (4.3), при этом никаких ограни-
чений на величину деформаций Коши не требуется. Результат из работы [43] 
подтверждает правомерность подхода, предлагаемого в данной статье.

Работа выполнена в рамках Программы фундаментальных исследований 
СО РАН (код проекта 2.3.1.3.1).
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Abstract – Using the example of four-dimensional equilibrium equations for ki-
netic stresses in Eulerian rectangular coordinates, it is shown that the operator of 
the four-dimensional Cauchy strain tensor is conjugate (transposed) to the opera-
tor of the equilibrium equations. The same connection between the operators of 
the equilibrium equations and the Cauchy strain tensor also holds in the three-
dimensional case. Three variants of the derivation of the conditions for the com-
patibility of Cauchy deformations are given. In the four-dimensional case, there 
are 21 compatibility conditions, and in the three-dimensional case, there are six 
Saint-Venant compatibility conditions. It is shown that the Cauchy strain tensor, 
both in Eulerian and Lagrangian variables, completely determines the deformed 
state of a continuous medium. At the same time, no restrictions on the amount of 
displacements, deformations or rotations are required. The Lagrange-Green and 
Euler-Almancy tensors, the so-called large or nite deformations, and the displace-
ments are expressed using Cesaro formulas in terms of the Cauchy strain tensor. 
The de ning equations of an elastic continuous medium relate the Cauchy true 
stress tensor and the Cauchy strain tensor one to another. Using proper bases in the 
spaces of symmetric stress and strain tensors, the de ning relations can be written as 
six separate independent equations containing functions of only one argument. For 
continuous media with crystallographic symmetries, we can use the bases obtained 
on the basis of the generalized Hooke’s law.

Keywords: kinetic stresses, Cauchy strain and stress tensors, four-dimensional 
continuous medium, Lagrangian and Euler variables, compatibility conditions, 
Lagrange-Green and Euler-Almancy tensors, Cesaro formulas, de ning equations, 
eigenstates
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