
 

Известия Российской академии наук. Механика ТВЕРДОГО ТЕЛА 2025, 

№ 3,  с.  178–206

УДК 539.3

УСТОЙЧИВОСТЬ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ 
ЛИСТА ГРАФЕНА НА ОСНОВЕ МОМЕНТНО-МЕМБРАННОЙ 

ТЕОРИИ УПРУГИХ ПЛАСТИН

© 2025 г. А . А. Саркисяна, *, С. О. Саркисяна, **
аШиракский государственный университет им. М. Налбандяна, Гюмри, Армения

*E-mail: armenuhis@gmail.com, **e-mail: s_sargsyan@yahoo.com

Поступила в редакцию 29.07.2024 г. 
После доработки 29.09.2024 г. 

Принята к публикации 01.11.2024 г.

Двумерные наноматериалы (графен, углеродная нанотрубка) являют-
ся высокопрочными и сверхлегкими материалами, которые имеют ряд 
перспективных областей применения. С теоретической и прикладной 
точек зрения актуально на основе соответствующей континуальной тео-
рии деформационного поведения двумерных наноматериалов изучение 
различных задач их статики, устойчивости, колебаний и расчетов требу-
емых механических характеристик.
В данной работе на основе моментно-мембранной теории упругих пла-
стин, которая трактуется как континуальная теория деформационного 
поведения графена, изучаются задачи устойчивости свободно опертого 
листа графена (прямоугольной пластинки), равномерно сжатом в одном 
направлении, сжатом по двум направлениям, под действием касатель-
ных напряжений в его плоскости. Рассматривается также задача устой-
чивости равномерно сжатого листа графена, свободно опертых по двум 
противоположным сторонам и имеющих другие граничные условия по 
двум другим сторонам.
При решении задач на устойчивость листа графена (прямоугольной пла-
стинки) применяется метод Эйлера, при этом рассматривается слегка 
отклоненная от начального (безмоментного) положения форма равно-
весия (выпучившаяся пластинка), для которой составляются диффе-
ренциальные уравнения равновесия и граничные условия. Из решения 
указанных граничных задач определяется критическое значение нагруз-
ки, т.е. такого его значения, при котором первоначальная плоская фор-
ма пластинки становится неустойчивой. Все решения сопровождаются 
численными результатами: таблицами или диаграммами, дающими зна-
чения критической нагрузки для каждого частного случая.

Ключевые слова: лист графена, моментно-мембранная теория пластин, 
устойчивость первоначально-сжатого состояния, критические нагрузки
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1. Введение. Исследования устойчивости равновесия упругих тонких пла-
стин и оболочек – одна из актуальных проблем механики твердых деформи-
руемых тел. Для двумерных наноматериалов (графен, углеродная нанотрубка) 
эта проблема актуальная и современная.

При исследовании процессов деформирования однослойного листа графе-
на или углеродной нанотрубки можно непосредственно рассматривать атом-
ную природу строения этих наноструктур.

Для моделирования двумерных наноматериалов широкое распространение 
получил классический вариант метода молекулярной динамики [1–3], когда 
считается, что между атомами материала взаимодействие только силовое и 
центральное.

В связи с этим в работах [4, 5] отмечается, что если в атомной модели од-
нослойной нанотрубки учесть только силовое взаимодействие центрального 
характера, тогда нанотрубка не имела бы изгибной жесткости и была бы неу-
стойчивой структурой. Это высказывание полностью относится и к графену, 
тогда как наличие изгибной жесткости – это принципиальное свойство как 
нанотрубки, так и графена. А это, в свою очередь, означает [4, 5], что только 
существование однослойной нанотрубки или листа графена уже свидетель-
ствует о необходимости учета моментного взаимодействия между атомами 
этих двумерных наноматериалов. Отметим, что в работах [6–9] существен-
но развивается направление изучения механических свойств графена и угле-
родной нанотрубки с использованием частиц с вращательными степенями 
свободы и с учетом моментного взаимодействии между их атомами. На этой 
основе в работах [6, 10] как континуальная модель деформационного поведе-
ния однослойной углеродной нанотрубки или листа графена устанавливается 
трехмерная моментная теория упругости с независимыми полями перемеще-
ний у вращений. Принимая это, следует обращать внимание на следующую 
актуальную задачу: так как графен и углеродная нанотрубка состоят из одного 
атомного слоя, на основе трехмерной моментной теории упругости актуаль-
но построение моделей пластин и цилиндрических оболочек как адекватных 
континуальных моделей листа графена и углеродной нанотрубки.

Продолжая тему о применении метода молекулярной динамики, следует 
констатировать, что в качестве более точного метода расчета применяется 
этот метод с учетом дискретного строения двумерных наноматериалов с ис-
пользованием различных межатомных потенциалов, учитывающих энергии 
как валентных связей, так и валентных углов [11–16].

Обосновывая использование гармонического потенциала для межатом-
ного взаимодействия графитовой плоскости и углеродной нанотрубки (кон-
кретный вид этого потенциала приведен в работе [17]), а также имея ввиду, 
что гармонический потенциал соответствует потенциальной энергии дефор-
мации упругого стержня, соединяющего пару взаимодействующих атомов, 
в работе [18] построена стержневая система по классической теории, экви-
валентной атомной модели указанных двумерных наноматериалов. Такая 
стержневая система является дискретно-континуальной моделью для графи-
товой плоскости или нанотрубки. Работы [19–26] посвящены дальнейшему 
и существенному развитию этого направления. Так, например, в работе [19] 
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построена дискретно-континуальная модель деформационного поведения 
графитовой плоскости и углеродной нанотрубки, а решение задачи много-
стержневой системы (как задача прикладной теории упругости) осуществле-
но методом конечных элементов по специально разработанной программе. 
В результате исследована деформация графитовой плоскости и углеродной 
нанотрубки, определены модели Юнга и сдвига, коэффициент Пуассона и 
другие параметры деформации рассматриваемых двумерных наноматериалов.

Для моделирования деформаций, колебаний и выпучивания углеродной 
нанотрубки и листа графена широко используется также метод молекулярной 
механики. Метод молекулярной механики можно разделить на стандартный 
метод молекулярной механики [27, 28], основанный на прямом использова-
нии силовых полей атомных взаимодействий, и метод молекулярной струк-
турной механики [29–31], в котором потенциальные энергии атомных взаимо-
действий аппроксимируются потенциальными энергиями упругих балочных 
элементов Бернулли–Эйлера с круглым поперечным сечением. В указанных 
работах применением метода молекулярной структурной механики изучены 
задачи о собственных колебаниях, выпучивания и послекритического пове-
дения листа графена и углеродной нанотрубки. Здесь следует отметить, что 
по поводу применения классических моделей упругих балок или пластин так 
или иначе используется понятие толщины графена, которая является неодно-
значным понятием [32].

Как отметили выше, специальный интерес представляет не сама трех-
мерная моментная теория упругости, а построение на основе трехмерной 
моментной теории упругости адекватных деформационных моделей одно-
слойного листа графена (соответствующая теория тонких пластин), а также 
однослойной углеродной нанотрубки (соответствующая теория тонких ци-
линдрических оболочек). С этой точки зрения отметим, что в работе [33] сна-
чала изучается линейная атомная цепочка, когда между атомами силовое вза-
имодействие не центрально, имеется также моментное взаимодействие (для 
силового поля атомных взаимодействий выбран гармонический потенциал), 
в результате построена специальная одномерно-стержневая континуальная 
ее модель. Придерживаясь метода молекулярной структурной механики при 
рассмотрении ячейки периодичности кристаллической решетки графена, 
взаимодействие между атомами заменяется указанными стержнями. Таким 
образом, построена дискретно-континуальная (стержневая) модель графе-
на и предельным переходом – также его континуальная линейная модель. 
В этой же работе устанавливается, что построенная континуальная модель 
графена полностью идентична моментно-мембранной линейной теории 
упругих пластин [34, 35] и при помощи сравнения этих двух моделей были 
определены упругие жесткостные характеристики указанной теории пластин 
через физические параметры гармонического потенциала для углерода (из-
вестные в литературе).

Таким образом, моментно-мембранная линейная теория упругих пластин: 
а) плоское напряженное состояние, б) поперечный изгиб, с определенны-
ми (указанным выше образом) жесткостными характеристиками, трактует-
ся как континуальная теория деформационного поведения графена, которая 
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естественным образом открывает большие возможности для изучения раз-
личных прикладных задач статики, динамики и устойчивости листа графена. 
Весьма существенно отметить, что в этой континуальной теории деформаци-
онного поведения листа графена не используется понятие толщины графена.

Возможно рассмотрение деформационных задач листа графена в своей 
плоскости: для этого необходимо использовать модель плоского напряженно-
го состояния моментно-мембранной теории упругих пластин [33–35], анало-
гично при его поперечном изгибе необходимо использовать модель попереч-
ного изгиба указанной теории пластин [33–35].

В работе [36] аналогичным образом моментно-мембранная теория упругих 
тонких цилиндрических оболочек трактуется как континуальная модель де-
формационного поведения однослойной углеродной нанотрубки.

В данной работе на основе моментно-мембранной теории упругих пластин 
изучаются задачи устойчивости начально-деформированного состояния листа 
графена, представляющие практический интерес: 1) когда графен шарнирно 
опирается по всему контуру и в своей плоскости сжимается в одном направ-
лении; 2) сжимается в двух направлениях; 3) свободно опирается по двум 
противоположным сторонам, перпендикулярным к направлению сжатия, и 
имеет другие граничные условия по двум другим сторонам; 4) находится под 
действием сдвигающих усилий в своей плоскости.

2. Постановка задачи. Как уже отметили, из уравнений и граничных усло-
вий моментно-мембранной линейной теории упругих оболочек [34, 35] при 
переходе к пластинке получим две отдельные системы уравнений и граничные 
условия: 1) систему уравнений и граничные условия плоского напряженно-
го состояния упругих пластин, 2) систему уравнений и граничные условия 
поперечной изгибной деформации упругих пластин. Ниже приведем обе си-
стемы уравнений и граничные условия в декартовой системе координат x, y.

2.1. Основные уравнения и граничные условия плоского напряженного состо-
яния моментно-мембранной теории упругих пластин. Основные уравнения и 
граничные условия плоского напряженного состояния моментно-мембран-
ной теории упругих пластин выражаются так [33–35]:

– уравнения равновесия
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– физические соотношения упругости
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– граничные условия

	 , , 11 11 12 12 13 13T T S S L L= = =  при x = const,

	 , , 21 21 22 22 23 23S S T T L L= = =  при y = const 	 (2.4)
или
	 , , 1 1 2 2 3 3u u u u= = W = W  при x = const или y = const.	 (2.5)

Могут иметь место также смешанные граничные условия.
Здесь u1, u2 – тангенциальные перемещения, W3 – свободный поворот то-

чек пластинки вокруг оси z; Г11, Г22, Г12, Г21 – тангенциальные деформации; 
k13, k23 – изменения кривизны в плоскости xy; T11, T22, S12, S21 – тангенциаль-
ные усилия; L13, L23 – моменты.

В физических  соотношениях  упругости  (2 .3)  величины 
* * * */ ( ), ,  21E E C B= - n представляют собой жесткостные характеристики гра-

фена в плоскости xy; n – коэффициент Пуассона графена в плоскости xy. 
В работе [33] численно определены именно указанные жесткостные характе-
ристики для графена (E* = 287 Н/м, C* = 158 Н/м, B* = 5.05 · 10–10 Н · нм/рад2). 

2.2. Основные уравнения и граничные условия поперечного изгиба момент-
но-мембранной теории упругих пластин. Основные уравнения и граничные 
условия поперечного изгиба моментно-мембранной теории упругих пластин 
выражаются так [33–35]:

– уравнения равновесия
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– физические соотношения упругости
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– граничные условия:

	 , , 13 13 11 11 12 12N N L L L L= = =  при x = const,
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	 , , 23 23 21 21 22 22N N L L L L= = =  при y = const	 (2.9)

или
	 , , 1 1 2 2w w= W = W W = W  при x = const, при y = const.

Могут иметь место также граничные условия смешанного типа. Здесь w – 
прогиб пластинки; W1, W2 – свободные повороты точек пластинки вокруг осей 
x и y соответственно; Г13, Г23 – поперечные сдвиговые деформации в плоско-
стях xz и yz; k11, k22, k12, k21 – компоненты тензора изгиба-кручений; N13, N23 – 
перерезывающие усилия; L11, L22, L12, L21 – моменты от моментных напряже-
ний; D*, D′ – жесткостные характеристики графена при поперечном изгибе. 
Указанные характеристики для графена численно определены в работе [33] 
(D′ = 4.15 · 10–10 Н · нм/рад2, D* = 123.34 Н/м, h2 = -0.22).

Если геометрические соотношения (2.7) подставить в физические соот-
ношения (2.8) и полученные в уравнения равновесия (2.6), получим систему 
разрешающих уравнений поперечного изгиба пластин относительно функций 
( ) ( ) ( ), , , , ,1 2w x y x y x yW W :
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При изучении задач об устойчивости начально-деформированного состо-
яния графена необходимо рассматривать граничную задачу (2.10), (2.9), для 
этого в первом уравнении из (2.10) следует поперечную нагрузку q заменить 
на [37, 38]:

	 ( )
2 2 2

11 12 21 222 2

w w w
q T S S T

x yx y

∂ ∂ ∂
= - - + -

∂ ∂∂ ∂
	 (2.11)

где T11, T22, S12, S21 – решение начальной (безмоментной) граничной задачи 
плоского напряженного состояния упругих пластин (2.1)–(2.3) с соответству-
ющими граничными условиями.

3. Устойчивость свободно опертօго листа графена (прямоугольной пластин-
ки), равномерно сжатого в одном направлении. Пусть лист графена, т.е. пря-
моугольная пластинка (рис. 1), сжата в своей плоскости силами, равномерно 
распределенными по сторонам x = 0 и x = a. Величина сжимающей силы на 
единицу длины края обозначим через P (P  = const).

Постепенным увеличением P достигаем условий, при котором плоская 
форма равновесия сжатой пластинки становится неустойчивой и происхо-
дит изгиб пластинки. Соответствующее критическое значение сжимающей 
силы обозначим Pcr, которое и требуется определить. При P = Pcr пластин-
ка могла находиться в двух равновесных состояниях: 1) начальное плоское 
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сжатое состояние, для определения этого напряженного состояния необхо-
димо рассматривать систему уравнений (2.1)–(2.3) с граничными условиями: 
	 при ,  :  ,  ,  ,11 12 130 0 0x x a T P S L= = = - = =

	 при ,  :  ,  , ,12 22 230 0 0 0y y b S T L= = = = = 	 (3.1)
2) состояние поперечного изгиба, в этом случае необходимо рассматривать 

систему уравнений (2.6)–(2.8) с учетом (2.10), в данном случае с граничными 
условиями шарнирного опирания:
	 при , :  , , ,1 120 0 0 0x x a w L= = = W = =

	 при , :  , , .2 210 0 0 0y y b w L= = = W = = 	 (3.2)
Легко убедится, что решение граничной задачи (2.1)–(2.3), (3.1) имеет вид:

	 , ,  .11 12 21 13 230 0T P S S L L= - = = = = 	 (3.3) 
Систему уравнений статической устойчивости пластинки получим 
в виде (2.10), в котором q следует заменить по формуле (2.11), принимая 

,  .11 12 21 22 0T P S S T= - = = =
К полученной системе уравнений статической устойчивости пластинки 

следует присоединить граничные условия (3.2).
Решение граничной задачи (2.10), (3.2) представим так:

	 sin sin , sin cos , cos sin ,1 2
m x n y m x n y m x n y

w A B C
a b a b a b
π π π π π π

= W = W = 	(3.4)

которое тождественно удовлетворяет граничным условиям (3.2).
Подставляя (3.4) в систему уравнений (2.10) для определения постоянных 

A, B, C приходим к следующей алгебраической линейной однородной системе 
уравнений:

	 *
,

2 2 2
1

0
m n m n m

P A B C
a b D a b a

 π π π π π     - + - + - =      
       

Рис. 1. Прямоугольная пластинка подвергнута действию равномерно распределенных 
сжимающих сил T11= -P.
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=       

       

	 (3.5)

Обращая определитель системы (3.5) в нуль, для P получим следующее 
выражение:

	
( )

( )
*

,  .

22 2 22

2
2 2 2 2 2 2

2

m s nD a
P s

bb D
m m s n s

D b

+π
= =

 
π + + 

  

′

′
	 (3.6)

Изучение этого выражения на минимум показывает, что минимум полу-
чится при n  = 1. Действительно, формула (3.6) дает все значения P, соответ-
ствующие значениям m  = 1, 2, 3, ..., n  = 1, 2, 3, ..., при которых становится 
возможным искривление вида (3.4). Из всей совокупности значений P надо 
выбрать наименьшее; оно и будет критическим.

Рассматривая производную P от n, получим формулу:

	
( ) ( )

( )
*

*

.

2 2 2 2 2 2 2 2 2
22

2 2 2

2 2 2 2 2
2

2 2
D

ns m s n m s n s
D bdP D

dn b m D
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π + + 
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′

′

′
	 (3.7)

Как видно из формулы (3.7), dP/dn > 0, следовательно зависимость P от n 
представляет строго возрастающую функцию, следовательно, наименьшее 
значение P получается при n  = 1, чему соответствует искривление в направ-
лении стороны b по одной полуволне синусоиды.

Далее нужно определить, при каком значении m выражение для P, соот-
ветствующее данному отношению сторон s, будет наименьшим, и найти это 
наименьшее значение.

При n  = 1 формула для P принимает вид:
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В результате для m получим выражение:

	 * *

*

*

.

2
2 2 2

2 2
2

2

1

1

D

b D D D b
m s s

Db D D
D b

+ π
′

′

+ π
= =

′ ′- π - π
	 (3.9)

Так как m принимает значения 1, 2, 3, ..., а правая часть (3.9) может быть 
в общем случае положительным действительным числом, для определения Pcr 
поступим следующим образом. Формулу (3.8) перепишем так:

	
( )

*

( ) , , , , ,
2 2 2 2

2
2 2 2 2 2

2

1 2 3
D m s

P k k m
b D

m m s s
D b

π +
= = = …


′


π + + 

  

′
	 (3.10)

k

m = 1
m = 2
m = 3
m = 4
m = 5

8

6

4

2

1 1.41 2 2.45 3 3.46 4 4.47 5 5.48 s = a
b

Рис. 2. Зависимость коэффициента k от отношения s = a/b при разных значениях m.
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Здесь k – числовой коэффициент, величина которого зависит от отношения 
s = a/b и m.

На рис. 2 построены графики зависимости коэффициента k от отношения 
сторон пластинки s для разных значений m.

Жирной линией проведена огибающая эти кривые, которая определя-
ет минимальные значения коэффициента k в зависимости от отношения 
сторон s.

На огибающей отмечены точки, в которых происходит смена числа по-
луволн синусоиды, образующихся вдоль оси x при выпучивании пластинки. 
Они определяются как точки пересечения двух кривых, соответствующих 
двум смежным значениям коэффициента m. Их можно определить в общем 
виде из сравнения коэффициентов k согласно формуле (3.10) при числах по-
луволн m и m + 1:
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( )
( )( )
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.
( )  ( ) (
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)  

(
22 22 2 2

2 2 2 2 2 2 2 2

1

1 1

m sm s

m m s k s m m s k s

+ ++
=

+ + + + + +
	 (3.11)

Из этого уравнения получим:

( )( ) ( ) ( )
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2 1

D D
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D b D b
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D

D b

 
+ + π + + + + π   

 
′-

+ π

′ ′

= 	 (3.12)

В формуле (3.12), подставляя m  = 1, получим s = 1.41; при m  = 2 получим 
s = 2.45; при m  = 3 получим s = 3.46; при m  = 1 получим s = 4.47; при m  = 5 по-
лучим s = 5.48 и т.д.

Таким образом, пластинки (лист графена), имеющие отношение сторон 
s < 1.41, при потере устойчивости изгибаются вдоль оси x по одной полувол-
не синусоиды. Если отношение сторон пластинки 1.41 < s < 2.45, то пластин-
ка при выпучивании образует вдоль оси x две полуволны синусоиды, если 
2.45 < s < 3.46 – три полуволны и т.д.

В итоге для каждого s  = a/b имеем значение коэффициента k, а по фор-
муле (3.10) определяется соответствующее значение для Pcr .Например, 
когда размеры листа графена имеют значения: b = 10 нм, a = 20 нм, получаем 
Pcr = 24.58 Н/м.

Таблица 1. Значения коэффициента k при разных s = a/b

s 0.5 1 1.41 2 2.5 3 3.46 4 4.47 5
k 6.25 4 4.49 4 4.13 4 4.08 4 4.05 4
m 1 1 1–2 2 3 3 3–4 4 4–5 5

В табл. 1 даны значения коэффициента k для некоторых отношений s и 
указано соответствующее число полуволн.
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Здесь приведем значение min k для квадратной пластинки (в этом случае 
m = 1):
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′ 	 (3.13)

Перепишем формулу (3.10) в виде:
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Из себя представляет интерес также следующее предельное значение: 
b/a → ∞ или s → 0, при котором выпадают граничные условия при y = 0, y = b. 
Для этого значения будем иметь:
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4. Устойчивость листа графена (прямоугольной пластинки), сжатого по двум 
направлениям. Прямоугольная пластинка сжимается нагрузкой P1, распреде-
ленной равномерно по двум сторонам, и нагрузкой P2, распределенной рав-
номерно по другим сторонам (рис. 3).

Если одно из усилий растягивающее, то его в нижеприведенных уравнени-
ях нужно взять со знаком минус.

Задачу об устойчивости такой пластинки будем решать для случая всех 
четырех шарнирно-опертых сторон. Разрешающую систему уравнений 

P1

a

b

P1

P2

P2

y

x

Рис. 3. Прямоугольная пластинка подвергнута действию равномерно распределенных 
сжимающих сил T11 = P1 и T22 = P2.
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статической устойчивости пластинки для рассматриваемого случая получим, 
если в систему (2.10) вместо q подставим (2.11) с учетом того, что T11 = P1, 
T22 = P2, S12 = S21 = 0. К полученной системе уравнений следует присоединить 
граничные условия (3.2).

Далее для определенности задачи необходимо задать дополнительное 
условие для усилий P1 и P2, указав, как эти величины связаны между собой. 
Рассмотрим подробнее частный случай распределения усилий, когда усилия 
P1 и P2 меняются, но отношение их величин остается постоянным: T11 = -P, 
T22 = -aP2.

С учетом вышесказанного решение граничной задачи (2.10),(3.2) пред-
ставим в виде (3.4) (в этом случае граничные условия (3.2) тождественно бу-
дут удовлетворены), тогда для определения постоянных коэффициентов A, 
B, C приходим к следующей однородной линейной системе алгебраических 
уравнений:

	
*

,
2 2 2 2

1
0

m n m n n m
P A B C

a b D a b b a

  π π π π π π        - + + + a + - =        
           

	
( )

( )

* *

* *

,

.

2 2

2 2

1 0

1 0

m m

m m

D Dn m n m n
A B C

b a b D a b

D Dm m n m n
A B C

D a a b a b D

D

 π π π π π      - + n + + - n =       
       

 π π π π π      - - n - + + n + =       
       ′ ′

′ ′ 	 (4.1)

Обращая определитель линейной однородной алгебраической системы 
(4.1) в нуль, находим величину силы P, удерживающую пластинку в изогну-
том состоянии:
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	 (4.2)

Выражение (4.2) представим в виде:
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где
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Критическое значение силы P соответствует минимальному значению ко-
эффициента k. Подсчитываем минимальные значения коэффициента k для 
одного частного значения a = 1, т.е. тогда пластинка (лист графена) сжимается 
одинаковыми силами в двух направлениях.

В этом случае из формулы (4.4) получаем:
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Можно показать, что наименьшее значение коэффициента k соответствует 
значениям m = 1, n = 1.

Таким образом, подставляя полученные значения m и n в формулу (4.5), 
в случае сжатия прямоугольной пластинки в двух направлениях одинаковыми 
силами, для критического значения силы P получим:
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Можно построить график зависимости минимума коэффициента k от от-
ношения сторон пластинки s (рис. 4).

Для квадратной пластинки s = 1 и 
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следовательно, для критического значения силы P получим:
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Сравнивая этот результат с критической силой, полученной в случае квад-
ратной пластинки, сжатой в одном направлении (3.13), заключаем, что при 
сжатии квадратной пластинки в двух направлениях одинаковыми силами P 
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20
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b

Dʹ π2

b2
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Рис. 4. Зависимость минимума коэффициента k от отношения сторон пластинки s.
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критическая сила оказывается в два раза меньше, чем при сжатии в одном 
направлении.

При увеличении отношения сторон s значение критической силы стремит-
ся к
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т.е. к величине в четыре раза меньше, чем при сжатии в одном направлении 
(формула (3.13)).

5. Устойчивость равномерно сжатого листа графена (прямоугольной пластин-
ки), свободно опертого по двум противоположным сторонам, перпендикулярным 
к направлению сжатия, и имеющего другие граничные условия по двум дру-
гим сторонам. Пусть прямоугольная пластинка (лист графена) сжата в своей 
плоскости силами P, равномерно распределенными по сторонам x = 0 и x = a 
(рис. 1). Рассмотрим случай, когда нагруженные кромки пластинки закреп-
лены шарнирно, а ненагруженные – жестко защемлены.

Разрешающая система уравнений для рассматриваемого случая (T11 = P, 
T22 = 0, S12 = S21 = 0) будет иметь вид (2.6), с учетом (2.11), к которой следует 
присоединить граничные условия:
	 при , : , , ,1 120 0 0 0x x a w L= = = W = = 	 (5.1)
	 при , : , , .1 20 0 0 0y y b w= = = W = W = 	 (5.2)

Допуская, что под действием сжимающих сил пластинка выпучивается в m 
синусоидальных полуволн по направлению x, принимаем решение в виде:

	 ( ) ( ) ( )sin , sin , cos .1 2
m x m x m x

w A y B y C y
a a a
π π π

= W = W = 	 (5.3)

Решение (5.3) удовлетворяет граничным условиям (5.1) вдоль шарнирно 
опертых сторон x = 0, a пластинки.

Подставляя решение в систему уравнений (2.6), получим систему обыкно-
венных дифференциальных уравнений для определения функций A(y), B(y) 
и C(y):
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 π π + n + n - - - =  
   

π π π   n -

′

′
+ + n - + =   

   

	(5.4)

с граничными условиями, вытекающими из (5.1):
	 A = 0, B = 0, C = 0 при y = 0, b	 (5.5)
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Представим решение системы обыкновенных дифференциальных уравне-
ний (5.4) в виде:

	 ( ) ( ) ( ), . , 1 1 1
y y yA y A e B y B e C y C el l l= = = 	 (5.6)

Приняв обозначения
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π π π = - = n l = + n l - - 
 

′ ′

′ ′

	 (5.7)

для определения l получим уравнение:

	 [ ] ,  , , ,Det 0 1 3ija i j= = 	 (5.8)

которое представляет собой алгебраическое биквадратное уравнение 6-ой 
степени.

Для получения аналитического решения этого уравнения использованы 
стандартные функции пакета Mathematica 13 компании Wolfram Research, Inc. 
В результате получаются решения , , , ,1 3 4 5 6i± l l l l l , где l1 > 0, l4, l5, l6 ве-
щественные числа:

	 , , ,1 3 42 2 2
m m m

a a a
π π π

l = -a + b l = a + b l = - a + b
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+ π + n + π + n
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′ 	 (5.9)

притом

	 *

* **

  , .
2

2 4
Dm P P m P

a D D D a D

 π π   a = - b = +     ′     
	 (5.10)

Действительно, очевидно, что l5 и l6 вещественные.

Далее можно заметить, что *
 m P

a D

π
b > , следовательно

	
* *

    ,2 2 0
m P m P m
a D a D a
π π π b + a > - + = > 
 

	 (5.11)

которое означает, что l3 и l4 вещественные (l3 < 0, l4 < 0).
Рассмотрим предельное значение критической нагрузки (3.17), как 

отметили, при этом выпадают граничные условия на гранях y = 0, y = b 
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прямоугольника (рис. 1), следовательно, критическое значения нагрузки 
(3.15) можем также считать предельными и для рассмотренной в этом парагра-
фе задачи, поэтому при конечных значениях a и b будем иметь неравенство:
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.
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2 2 2

2

1

1

D m
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a D m

D a

′
π

π
+

′
> 	 (5.12)

Имея ввиду это неравенство, можно доказать, что b – a > 0:
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Используя неравенство (5.12), будем иметь:
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Следовательно, суммируя (5.13) и (5.14) и выполнив некоторые преобразо-
вания, получим:
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т.е.
	 .0b - a > 	 (5.15)
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Таким образом, l1 > 0, l3, l4, l5, l6 вещественные числа.
Решение системы дифференциальных уравнений окончательно можно 

представить в следующем виде:

 

( ) [ ] [ ]
( ) [ ] [ ]
( ) [ ] [ ]

sin cos ,

sin cos ,

sin cos .
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= l + l + + + +

	 (5.16)

При этом между постоянными коэффициентами существуют следующие 
связи:
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		  (5.17)
Далее, удовлетворив граничные условия (5.5) с учетом (5.17), получим си-

стему однородных алгебраических линейных уравнений относительно C1i, 
i = 1, 6. Для получения нетривиальных решений потребуем, чтобы опреде-
литель этой системы равнялся нулю, в результате получим трансцендентное 
уравнение для определения P:
	 [ ] , , , .Det 0 1 6ijb i j= = 	 (5.18)
Здесь bij выражается в виде:
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Для решения уравнения (5.18) относительно P использован пакет 
Mathematica 13 компании Wolfram Research, Inc. Решение получено для 
разных значений m и s = a/b. Далее приведены результаты расчетов в табл. 2. 
Расчеты показывают, что наименьшее значение P получается при m = 1.

Таблица 2. Значение P (Н/м) при разных m и a/b
sm 0.5 1 1.2 1.4 1.6 1.8 2 2.5 3 3.5 4

1 14.46 3.96 2.78 2.05 1.58 1.25 1.02 0.65 0.45 0.33 0.26
2 42.8 14.46 10.42 7.83 6.08 4.86 3.96 2.57 1.79 1.32 1.02
3 67.16 28.38 21.2 16.32 12.89 10.42 8.58 5.63 3.96 2.94 2.26
4 83.88 42.8 33.24 26.31 21.2 17.38 14.46 9.66 6.88 5.13 3.96

6. Устойчивость листа графена (прямоугольной пластинки) под действием ка-
сательных напряжений в его срединной плоскости. Пусть прямоугольная пла-
стинка подвергнута действию касательных сил, равномерно распределенных 
по краям (рис. 5). Рассмотрим случай, когда все, кромки пластинки, шарнир-
но оперты.

Разрешающая система уравнений устойчивости пластинки будет выра-
жаться системой (2.10) с учетом (2.11), имея ввиду, что для рассматриваемого 

P

a

b

P

P

P

y

x

Рис. 5. Прямоугольная пластинка подвергнута действию равномерно распределенных 
касательных сил  S12 = S21 = P.
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случая: T11 = T22 = 0, S12 = S21 = P, к которой следует присоединить граничные 
условия (3.2).

Решение полученной граничной задачи (2.10), (3.2), т.е. задачи о выпучи-
вании пластинки под действием касательных сил в ее срединной плоскости, 
в конечном виде весьма сложно, поэтому воспользуемся вариационным ме-
тодом Бубнова–Галеркина.

Решение граничной задачи (2.10), (3.2) представим в виде рядов:
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	 (6.1)

Отметим, что форма решения (6.1) тождественно удовлетворяет как гео-
метрическим, так и статическим горничным условиям (3.2).

Применим метод Бубнова–Галеркина:
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	 (6.2)

Будем учитывать в начале по два параметра в этом методе:
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	 (6.3)

Из системы уравнений (6.2) при p = q = 1, 2 получим однородные алгебраи-
ческие уравнения относительно A11, A22, B11, B22, C11, C22:
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Для получения нетривиальных решений потребуем, чтобы определитель 
системы уравнений (6.4) равнялся нулю, в результате получим линейное ал-
гебраическое уравнение для определения P:

	 , , , ,Det 0 1 6ijd i j  = =  	 (6.5)

где введены обозначения:
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В результате на основе уравнения (6.5) получим:
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или
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Представим формулу (6.8) в виде:
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Во втором приближении получим:
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Из системы уравнений (6.2) при p = q = 1, 2, 3 получим однородные алге-
браические уравнения относительно A11, A22, A13, A31, A33, B11, B22, B13, B31, B33, 
C11, C22, C13, C31, C33. Далее для получения нетривиальных решений потребу-
ем, чтобы определитель полученной системы уравнений равнялся нулю, в ре-
зультате получим P:
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(6.13)

Представим формулу (6.12) в виде:
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В третьем приближении получим:
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Из системы уравнений (6.2) при p = q = 1, 2, 3, 4 получаются однородные 
алгебраические уравнения относительно A11, A22, A13, A31, A33, A24, A42, B11, B22, 
B13, B31, B33, B24, B42, B44, C11, C22, C13, C31, C33, C24, C42, C44. Далее для получения 
нетривиальных решений потребуем, чтобы определитель полученной системы 
уравнений равнялся нулю, в результате получается биквадратное алгебраиче-
ское уравнение 8-ой степени относительно P. Уравнение решена, применив 
операторы численного анализа и графический метод в пакете Mathematica 13, 
после чего можно определить k3, где:
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3 2
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b
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В табл. 3 приведены значения коэффициентов k2, k3 и k4.
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Таблица 3. Численные значения коэффициентов k1 (по формуле (6.10)), k2 
(по формуле (6.15)) и k3 при разных значениях s = a/b

s 1 1.2 1.4 1.6 1.8 2 2.5 3
k1 9.56 8.41 7.89 7.71 7.73 7.87 8.53 9.42
k2 7.76 6.83 6.34 6.09 5.98 5.94 6.04 6.28
k3 7.73 6.8 6.31 6.04 5.88 5.77 5.6 5.45

Из приведенной таблицы убедимся, что третье приближение обес-
печивает требуемую практическую точность решения задачи по методу 
Бубнова–Галеркина.

7. Заключение. В работе изложена моментно-мембранная линейная теория 
тонких пластин: 1) плоского напряженного состояния, 2) поперечного изгиба 
как континуальная теория деформационного поведения листа графена.

На основе указанной теории упругих пластин рассматриваются различные 
задачи устойчивости первоначального плоского (безмоментного) равновесно-
го состояния листа графена. В каждой поставленной задаче выведены линей-
ные однородные уравнения устойчивости прямоугольной пластинки (листа 
графена) с соответствующими однородными граничными условиями. Изло-
жена методика расчета критических нагрузок и форм потери устойчивости 
листа графена. Приведен ряд точных и приближенных аналитических реше-
ний, рассматриваемых класс задач, и их численный параметрический анализ.

Работа выполнена при финансовой поддержке Комитета по высше-
му образованию и науке МОНКС РА в рамках научного проекта № SCS 
25RG-2F119.

СПИСОК ЛИТЕРАТУРЫ
1.	  Allen M.P., Tildesley D.I. Computer simulation of liquids. Oxford Science Publications, 

2000. 385 p.
2.	  Kang J.W. et al. Molecular dynamics modeling and simulation of a graphene-based 

nanoelectromechanical resonator // Curr. Appl. Phys. 2013. V. 13. № 4. P 789–794.
	 https://doi.org/10.1016/j.cap.2012.12.007

3.	  Wang J., Li T.T. Molecular dynamics simulation of the resonant frequency of graphene 
nanoribbons // Ferroelectrics. 2019. V. 549. № 1. P. 87–95.

	 https://doi.org/10.1080/00150193.2019.1592547
4.	  Иванова Е.А., Морозов Н.Ф., Семенов Б.Н., Фирсова А.Д. Об определении упругих 

модулей наноструктур, теоретический расчет и методика экспериментов // Изв. 
РАН. МТТ. 2005. № 4. С. 75–84.

5.	  Иванова Е.А., Кривцов А.М., Морозов Н.Ф. Получение макроскопических соотно-
шений упругости сложных кристаллических решеток при учете моментных взаи-
модействий на микроуровне // ПММ. 2007. Т. 71. № 4. С. 595–615.

6.	  Иванова Е.А., Кривцов А.М., Морозов Н.Ф., Фирсова А.Д. Описание кристалличе-
ской упаковки частиц с учетом моментных взаимодействий // Изв. РАН. МТТ. 
2003. № 4. С. 110–127.

7.	  Беринский И.Е., Иванова Е.А., Кривцов А.М., Морозов Н.Ф. Применение момент-
ного взаимодействия к построению устойчивой модели кристаллической решетки 
графита // Изв. РАН. МТТ. 2007. № 5. С. 6–16.



202	 Саркисян, Саркисян

8.	  Кузькин В.А., Кривцов А.М. Описание механических свойств графена с использо-
ванием частиц с вращательными свойствами степеней свободы // Доклады РАН. 
2011. Т. 440. № 4. С. 476–479.

9.	  Беринский И.Е. и др. Современные проблемы механики. Механические свойства 
ковалентных кристаллов: учеб. пособие / Под общ. ред. А.М. Кривцова, О.С. 
Лобода. СПб.: Изд-во Политехн. ун-та, 2014. 160 с.

10.	  Иванова Е.А., Кривцов А.М., Морозов Н.Ф., Фирсова А.Д. Теоретическая механика. 
Определение эквивалентных упругих характеристик дискретных систем. СПб.: Из-
д-во СПбГПУ, 2004. 32 с.

11.	  Савинский С.С., Петровский В.А. Дискретная и континуальная модели для расчета 
фононных спектров углеродных нанотрубок. // Физика твердого тела. 2002. Т. 44. 
Вып. 9. С. 1721–1726.

12.	  Savin A.V., Kivshar Y.S., Hu B. Suppression of thermal conductivity in graphene 
nanoribbons with rough edges. // Phys. Rev. B. 2010. V. 82. 195422.

	 https://doi.org/10.1103/PhysRevB.82.195422
13.	  Abdullina D.U., Korznikova E.A., Dubinko V.I., Laptev D.V., Kudreyko A.A., Soboleva E.G. 

et al. Mechanical response of carbon nanotube bundle to lateral compression // 
Computation. 2020. V. 8. № 2. P. 27.

	 https://doi.org/10.3390/computation8020027
14.	  Evazzade I., Lobzenko I.P., Korznikova E.A., Ovid’ko I.A., Roknabadi M.R., Dmitriev S.V. 

Energy transfer in strained graphene assisted by discrete breathers excited by external ac 
driving // Phys. Rev. B. 95. 2017. P. 035423.

	 https://doi.org/10.1103/PhysRevB.95.035423
15.	  Дмитриев С.В., Сунагатова И.Р., Ильгамов М.А., Павлов И.С. Собственные часто-

ты изгибных колебаний углеродных нанотрубок. // Журнал технической физики. 
2021. Т. 91. Вып. 11. С. 1732–1737.

	 https://doi.org/10.21883/JTF.2021.11.51536.127-21
16.	  Кривцов А.М. Деформирование и разрушение твердых тел с микроструктурой. М.: 

Физматлит, 2007. 304 с.
17.	  Кормилицин О.П., Шукейло Ю.А. Механика материалов и структур нано- и микро-

техники. М.: Издательский центр “Академия”, 2008. 224 с.
18.	  Odegard G.M., Gates T.S., Nicholson L.M., Wise K.E. Equivalent-continuum modeling of 

nano-structured materials // NASA Langley Research Center: Technical Memorandum 
NASA/TM. 2001. P. 1869–1880.

19.	  Гольдштейн Р.В., Ченцов А.В. Дискретно-континуальная модель нанотрубки // 
Изв. РАН. МТТ. 2005. № 4. С. 57–74.

20.	  Гольдштейн Р.В., Ченцов А.В. Дискретно-континуальная модель деформирования 
нанотрубок. М.: ИПМ РАН, 2003. Препринт № 739. 67 с.

21.	  Лисовенко Д.С., Городцов В.А. От графита (стержней, пластин, оболочек) к углерод-
ным нанотрубкам. Упругие свойства. М.: ИПМ РАН, 2004. Препринт № 747. 67 с.

22.	  Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С. Мезомеханика многослойных уг-
леродных нанотрубок и наноусов // Физическая мезомеханика. 2008. Т. 11. № 6. 
С. 25–42.

23.	  Li C.A., Chou T.W. A structural mechanics approach for the analysis of carbon 
nanotubes // Int. J. Solids Struct. 2003. V. 40. № 10. P. 2487–2499.

	 https://doi.org/10.1016/S0020-7683(03)00056-8



	 УСТОЙЧИВОСТЬ ПЛОСКОГО НАПРЯЖЕННОГО СОСТОЯНИЯ ЛИСТА...� 203

24.	  Wan H., Delale F. A structural mechanics approach for predicting the mechanical 
properties of carbon nanotubes // Mechanica. 2010. V. 45. P. 43–51.

	 https://doi.org/10.1007/s11012-009-9222-2
25.	  Беринский И.Е., Кривцов А.М., Кударова А.М. Определение изгибной жесткости 

графенового листа // Физ. мезомех. 2014. Т. 17. № 1. С. 57–65.
26.	  Устинов К.Б., Ченцов А.В. О деформировании нанопластин углерода: дискретное и 

континуальное моделирование. М.: ИПМ. РАН, 2007. Препринт № 824. 31с.
27.	  Аннин Б.Д., Коробейников С.Н., Бабичев А.В. Компьютерное моделирование выпу-

чивания нанотрубки при кручении // Сиб. жур. индустр. матем. 2008. Т. 11. № 1. 
С. 3–22.

28.	  Аннин Б.Д., Баимова Ю.А., Мулюков Р.Р. Механические свойства, устойчивость, 
коробление графеновых листов у углеродных нанотрубок (обзор) // Прикл. мех. и 
тех. физика. 2020. Т. 61. № 5. С. 175–189.

	 https://doi.org/10.15372/PMTF20200519
29.	  Korobeynikov S.N., Alyokhin V.V., Babichev A.V. Simulation of mechanical parameters 

of graphene using the DREIDING force field // Acta Mechanica. 2018. V. 229. № 6. 
P. 2343–2378.

	 https://doi.org/10.1007/s00707-018-2115-5
30.	  Korobeynikov S.N., Alyokhin V.V., Babichev A.V. On the molecular mechanics of single 

layer graphene sheets // Int. J. Eng. Sci. 2018. V. 133. P. 109–131.
	 https://doi.org/10.1016/j.ijengsci.2018.09.001

31.	  Korobeynikov S.N., Alyokhin V.V., Babichev A.V. Advanced nonlinear buckling analysis of 
a compressed single layer graphene sheet using the molecular mechanics method // Int. 
J. Mech. Sci. 2021. V. 209. P. 106703.

	 https://doi.org/10.1016/j.ijmecsci.2021.106703
32.	  Кривцов А.М., Морозов Н.Ф. Аномалии механических характеристик наноразмер-

ных объектов // Доклады РАН. 2001. Т. 381. № 3. С. 825–827.
33.	  Саркисян С.О. Стержневая и континуально-моментная модели деформаций дву-

мерных наноматериалов // Физическая мезомеханика. 2022. Т. 25. № 2. С. 109–121.
34.	  Саркисян С.О. Модель тонких оболочек в моментной теории упругости с дефор-

мационной концепцией “сдвиг плюс поворот” // Физическая мезомеханика. 2020. 
Т. 23. № 4. С. 13–19.

	 https://doi.org/10.24411/1683-805X-2020-14002
35.	  Саркисян С.О. Вариационные принципы моментно-мембранной теории оболо-

чек // Вестник Московского университета. Серия 1: Математика. Механика. 2022. 
№ 1. С. 38–47.

36.	  Sargsyan S.H. Moment-membrane theory of elastic cylindrical shells as a continual model 
of deformation of a single-layer carbon nanotube // Materials Physics and Mechanics. 
2024. V. 52. № 1. P. 26–38.

	 https://doi.org/10.18149/MPM.5212024_3
37.	  Тимошенко С.П. Устойчивость упругих систем. М.: Гостехиздат, 1955. 569 с.
38.	  Вольмир А.С. Устойчивость деформируемых систем. М.: Наука, 1967. 984 с.



204	 Саркисян, Саркисян

STABILITY OF THE PLANE STRESSED STATE OF THE GRAPHENE 
SHEET BASED ON THE MOMENT-MEMBRANE THEORY 

OF  ELASTIC PLATES

A. H. Sargsyana, *, S. H. Sargsyana, **
aState University of Shirak after M. Nalbandyan, Gyumri, Armenia

*e-mail: armenuhis@gmail.com, **e-mail: s_sargsyan@yahoo.com

Abstract – Two-dimensional nanomaterials (graphene, carbon nanotube) are 
high-strength and ultra-light materials that have several promising areas of ap-
plication. From theoretical and applied perspectives, it is relevant to study vari-
ous problems of their statics, stability, vibrations, and calculations of the required 
mechanical characteristics based on the corresponding continuum theory of the 
deformation behavior of two-dimensional nanomaterials.
In this work, based on the moment-membrane theory of elastic plates, which is 
interpreted as the continuum theory of the deformation behavior of graphene, sta-
bility problems of a freely supported graphene sheet (rectangular plate) are studied. 
The sheet is uniformly compressed in one direction, compressed in two directions, 
and subjected to shear stresses in its plane. The stability problem of uniformly com-
pressed graphene sheets, freely supported on two opposite sides and having differ-
ent boundary conditions on the other two sides, is also considered.
When solving stability problems of the graphene sheet (rectangular plate), the 
Euler method is applied, considering a form of equilibrium that is slightly deviated 
from the initial (moment-free) position (buckled plate). Differential equilibrium 
equations and boundary conditions are formulated for this shape. The critical load 
value is determined from the solution of these boundary problems, i.e., the load 
value at which the initial flat form of the plate becomes unstable. All solutions are 
accompanied by numerical results: tables or diagrams providing the critical load 
values for each particular case.

Keywords: graphene sheet, moment membrane theory of plates, stability of the 
initially compressed state, critical loads
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