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Рассматриваются плоские контактные задачи с ограниченной областью 
контакта для упругих тел, на поверхности которых нанесен регулярный 
микрорельеф (РМР). Предполагается, что для определения напряжен-
но-деформированного состояния тел может быть использовано реше-
ние Фламана задачи о действии сосредоточенной нормальной силы 
на границе упругой полуплоскости. При моделировании контактного 
взаимодействия использована расчетная схема, в которой одно из тел 
считается жестким штампом, а второе – упругой полуплоскостью с при-
веденным модулем упругости. Рассмотрены однопараметрические се-
мейства штампов с РМР, в качестве параметра которых выступает число 
микровыступов. Методом вычислительного эксперимента исследованы 
закономерности контактного взаимодействия штампов с РМР и упругой 
полуплоскости. На основе установленных закономерностей предложена 
методика приближенного расчета распределения нагрузок между эле-
ментами РМР, а также оценки контактного давления, размеров площа-
док фактического контакта и средних конечных зазоров на микровысту-
пах.

Ключевые слова: задача одностороннего дискретного контакта, поверхно-
сти с регулярным микрорельефом

DOI: 10.31857/S1026351925030083, EDN: azzbde

1. Введение. Поверхности с регулярным микрорельефом (РМР) приме-
няются для улучшения различных эксплуатационных свойств деталей ма-
шин и приборов [1]. При расчете параметров контактного взаимодействия 
таких поверхностей в качестве математических моделей, как правило, ис-
пользуются периодические контактные задачи [2–5]. Характерной особен-
ностью постановок периодических контактных задач является равномер-
ное распределение нагрузок между отдельными элементами РМР. В случае 
ограниченной области контакта распределение нагрузок между элемента-
ми РМР является неравномерным, что значительно усложняет решение 
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задачи. Для решения этого класса задач дискретного контакта, как правило, 
используются численные алгоритмы.

В настоящей работе рассматриваются плоские контактные задачи с огра-
ниченной областью контакта для упругих тел, на поверхности которых на-
несен РМР. Предполагается, что макроформа и РМР контактирующих тел 
таковы, что для определения напряженно-деформированного состояния тел 
может быть использовано решение Фламана задачи о действии сосредоточен-
ной нормальной силы на границе упругой полуплоскости. В этом случае при 
моделировании контактного взаимодействия двух упругих тел может быть 
применена расчетная схема, в которой одно из тел считается недеформируе-
мым (жестким штампом), а второе – упругой полуплоскостью с приведенным 
модулем упругости [6]. На поверхности возможного контакта полуплоскости 
со штампом задаются условия одностороннего контакта, трение на площадках 
контакта отсутствует.

Для численного решения рассматриваемого класса задач односторонне-
го дискретного контакта использованы алгоритмы, разработанные в работах 
[7, 8]. Методом вычислительного эксперимента исследованы закономерности 
контактного взаимодействия штампов с РМР и упругой полуплоскости. На 
основе установленных закономерностей для поверхностей с РМР предложена 
методика приближенного расчета распределения нагрузок между элементами 
РМР, а также оценки контактного давления, размеров площадок фактическо-
го контакта и средних конечных зазоров на микровыступах.

2. Постановка задачи. Пусть невесомая однородная изотропная упругая по-
луплоскость в неподвижной прямоугольной системе координат Oxy занимает 
область 2{( , ) : 0}x y yW = ∈ ≤  с границей Г. Далее под ( , ), ( , ), ( , )x y x y x ye su  
будем понимать соответственно вектор перемещений и тензоры деформаций 
и напряжений в точке (x, y)  ∈  W. Предполагается, что полуплоскость находит-
ся в условиях плоской деформации, деформации малы, а напряжения в не-
деформированном состоянии отсутствуют. Напряженно-деформированное 
состояние полуплоскости описывается системой уравнений:

	 def ,=e u  : ,=s eS  div 0=s  в W,	 (2.1)

где Tdef / (grad grad )1 2≡ + , S – тензор модулей упругости.
В полуплоскость вдавливается гладкий жесткий штамп, основание кото-

рого имеет РМР. Часть границы Г, по которой возможен контакт полуплос-
кости со штампом, обозначается Гр. Положение и предельные размеры об-
ласти возможного контакта Гр задаются априори исходя из геометрических 
и физических соображений. Предполагается, что часть границы Гр является 
односвязной и конечной. При вдавливании штампа с РМР область возможно-
го контакта Гр включает множество отдельных пятен фактического контакта, 
положение и размеры которых заранее неизвестны.

Форма основания штампа и его РМР описываются функцией Ф(x), зна-
чение которой в точке (x, 0)  ∈  Гp равно расстоянию от этой точки до поверх-
ности штампа, измеренному вдоль направления внешней нормали к границе 
полуплоскости. Расстояние Ф(x) отсчитывается по отношению к недефор-
мированному состоянию полуплоскости. В случае штампа с РМР функция 
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Ф(x) является мультимодальной (многоэкстремальной). Для определенности 
полагается min ( ) 0

p

x
Γ

Φ = . Предполагается также, что выполняется условие:
	 1Φ /d dx  ,	 (2.2)
необходимое для применимости решения Фламана и рассматриваемой рас-
четной схемы при моделировании локального контактного взаимодействия 
двух упругих тел.

Положение штампа определяется вектором перемещений d = (dx, dy) и уг-
лом поворота jz как жесткого целого. Главный вектор F = (Fx, Fy) и главный 
момент Mz внешних сил, приложенных к штампу, считаются заданными. 
В качестве центра приведения выбирается точка (xc, yc). Далее рассматривает-
ся задача нормального контакта полуплоскости со штампом, поэтому будем 
полагать:
	 0d =x , 0=xF , < 0−∞ < yF , < ∞zM .	 (2.3)

Контактное взаимодействие упругой полуплоскости с жестким штампом 
описывается условиями одностороннего гладкого контакта:

( ) ,y y c zu x x≤ Φ + d + − j  0,yys ≤  ( ) 0,yy y y c zu x x s − Φ−d − − j =   0xys =  
	 на Гр.	 (2.4)

Остальная часть границы полуплоскости свободна от внешних нагрузок:
	 0xy yys = s =  на \ pΓ Γ .	 (2.5)

Уравнения равновесия жесткого штампа имеют вид:

	 ,
p

yy ydx F
Γ

s =∫   ( ) .
p

yy c zx x dx M
Γ

s − =∫ 	 (2.6)

Отметим, что соотношения (2.6), по существу, представляют собой нело-
кальные граничные условия.

Для существования решения рассматриваемой контактной задачи далее 
будем предполагать, что внешние силы и моменты, приложенные к жестко-
му штампу, согласованы между собой таким образом, что существует распре-
деление нормальных напряжений syy ≤ 0 на Гр, удовлетворяющее уравнениям 
равновесия штампа (2.6).

Чтобы выделить класс единственности решения в рассматриваемой зада-
че, необходимо наложить дополнительные условия на поведение решения на 
бесконечности и на смещения полуплоскости как жесткого целого.

В монографии [9] рассмотрен случай, когда на бесконечности напряже-
ния и вращение стремятся к нулю. Показано, что эти условия обеспечивают 
единственность поля напряжений. Если при этом отсутствуют массовые силы, 
а главный вектор внешних поверхностных усилий имеет ограниченную ве-
личину и отличен от нуля, то напряжения и соответствующие им перемеще-
ния имеют асимптотические представления:
	 ( ) (1 )s = /ij O rx , ( ) (ln )=iu O rx  при → ∞r ,	 (2.7)

где r  = (x2 + y2)1/2.
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Перемещения )= ( ,x yv vv  полуплоскости как жесткого целого имеют вид:
	 ( ) = l − w,x xv x y y ,  ( ) = l + w,y yv x y x ,	 (2.8)
где lx и ly – компоненты поступательного перемещения; w – поворот полу-
плоскости как жесткого целого. Перемещение lx не влияет на условия нор-
мального контакта полуплоскости со штампом, поэтому примем lx = 0. Для 
выполнения условий (2.7) положим w = 0. Значение ly выбирается так, чтобы 
оператор Пуанкаре–Стеклова, отображающий на Гр нормальные напряжения 
syy в нормальные перемещения uy, был положительно-определенным [10].

Задача состоит в определении полей перемещений u(x, y), деформаций 
e(x, y) и напряжений s(x, y), удовлетворяющих уравнениям (2.1), граничным 
условиям (2.4)–(2.5), уравнениям равновесия штампа (2.6), условиям на бес-
конечности (2.7) и дополнительным условиям на перемещения полуплоско-
сти как жесткого целого (2.8). Подчеркнем, что в рассматриваемой задаче од-
ностороннего дискретного контакта априори задается лишь область возмож-
ного контакта Гр, положение и размеры пятен фактического контакта заранее 
неизвестны и подлежат определению в процессе решения задачи.

3. Класс штампов с РМР. Без потери общности будем полагать, что область 
возможного контакта имеет вид:
	 {0 , 0}p x a yΓ = ≤ ≤ = .

Введем в рассмотрение класс П(Ф1, Ф2, K) штампов с РМР, форма основа-
ния которых описывается функцией:
	 1 2( ) ( ) ( ) / ,x x KΦ = Φ + Φ x 	 (3.1)
где Ф1(x) – выпуклая функция, характеризующая макроформу штампа; 
Ф2(x) – выпуклая функция, определяющая форму РМР; K – число микровы-
ступов; x = {Kx/a} – “быстрая” координата, {.} – дробная часть числа.

Для заданной пары функций {Ф1, Ф2} формула (3.1) определяет однопа-
раметрическое семейство Пs(Ф1, Ф2) штампов с РМР, в качестве параметра 
которого выступает число микровыступов K. Микровыступы штампов одного 
семейства являются подобными, при этом коэффициент подобия равен от-
ношению чисел микровыступов. Несложно показать, что для всех штампов 
семейства Пs(Ф1, Ф2) величина max | dФ/dx | имеет одинаковое значение.

Все штампы, принадлежащие к одному семейству, имеют одинаковую 
макроформу, поэтому семейству Пs(Ф1, Ф2) штампов с РМР можно поста-
вить в соответствие так называемый базовый штамп Пb(Ф1) без РМР, форма 
основания которого описывается функцией Ф(x) ≡ Ф1(x), а область возмож-
ного контакта равна Гр. Кроме того, каждому штампу Пs(Ф1, Ф2, K) поставим 
в соответствие бесконечный в плане штамп Пp(Ф2, K) с таким же РМР, форма 
основания которого описывается функцией Ф(x) ≡ Ф1(x)/K. Контактное взаи-
модействие штампа Пp(Ф2, K) с упругой полуплоскостью моделируется пери-
одической задачей с периодом a/K.

При проведении расчетов использовались следующие параметрические 
представления функций:

  ( ) 1
1 1 1( ) 2 1 Φ = − − / ,

m
x h a H x a c   ( ) 2

2 2 2( ) 2 1 Φ x = x − − 
m

h a H c ,	 (3.2)
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где 0, 0 1, {0} [1; )i i ih c m≥ ≤ ≤ ∈ ∪ ∞  – безразмерные параметры, i = 1, 2; 
H(·)  – функция Хевисайда. Семейства штампов, определяемые парами функ-
ций (3.2), обозначаются Пn

s, где нижний индекс n = 1, 2, ... указывает на номер 
семейства. Штамп семейства Пn

s с K микровыступами обозначается Пn(K), со-
ответствующий семейству Пn

s базовый штамп – через Пn
b, а соответствующий 

штампу Пn(K) бесконечный в плане штамп – через Пn
p(K). Из формул (3.1) и 

(3.2) следует, что семейство штампов Пn
s определяется набором из шести па-

раметров {h1, c1, m1, h2, c2, m2}, при этом базовый штамп Пn
b определяется набо-

ром из трех параметров {h1, c1, m1}, а РМР – набором из четырех параметров 
{h2, c2, m2, K}.

Параметры некоторых семейств штампов, использованных при проведе-
нии вычислительных экспериментов, приведены в табл. 1. Количество микро-
выступов K изменялось в диапазоне 24 ÷ 212. В качестве примера на рис. 1а, б 
изображены соответственно профили базового штампа П7

b и микровыступов 
штампов семейства П7

s, а на рис. 2а, б – соответственно профили штампов 
П7(16) и П7(64). Следует отметить, что на рис. 1 и 2 масштабы изображения 
по вертикальной и горизонтальной осям отличаются на несколько порядков.

4. Нагрузки, приложенные к штампу. Нормальная компонента главного век-
тора (погонная сила) и главный момент внешних сил, приложенных к штам-
пу, задаются в виде:
	 *;yF f aE= −  ,z yM eF a=

где f  > 0 – безразмерный параметр; e – безразмерный параметр, характери-
зующий эксцентриситет равнодействующей внешней нагрузки относитель-
но центра приведения (xc, yc) = (0.5a, 0); E * = E/(1 – n2) – приведенный мо-
дуль упругости; E и n – модуль Юнга и коэффициент Пуассона материала 
полуплоскости. Таким образом, внешние нагрузки, приложенные к штампу, 
определяются парой безразмерных параметров { f, e}. Значения этих парамет-
ров для некоторых семейств штампов приведены в табл. 1.

Таблица 1. Параметры семейств штампов и внешней нагрузки

Семейство
штампов

Базовый 
штамп РМР max

| dФ/dx |
Внешняя нагрузка

h1 c1 m1 h2 c2 m2 f e
П1

s 0.0 0.00 0 10–5 0.00 2 0.400 · 10–4 0.80 · 10–5 0.00
П2

s 0.0 0.00 0 10–4 0.25 4 0.336 · 10–3 0.80 · 10–5 0.10
П3

s 10–5 0.00 1 10–3 0.00 2 0.402 · 10–2 0.90 · 10–5 0.00
П4

s 10–5 0.00 1 10–4 0.50 6 0.571 · 10–4 0.70 · 10–5 0.05
П5

s 10–5 0.00 2 10–4 0.00 2 0.440 · 10–3 1.20 · 10–5 0.00
П6

s 10–4 0.25 2 10–3 0.50 4 0.129 · 10–2 6.00 · 10–5 0.05
П7

s 10–5 0.00 4 10–3 0.25 2 0.308 · 10–2 1.20 · 10–5 0.00
П8

s 10–4 0.50 4 10–5 0.00 6 0.219 · 10–3 1.00 · 10–5 0.05
П9

s 10–5 0.00 6 10–5 0.75 2 0.130 · 10–3 0.20 · 10–5 0.00
П1

s
0 10–3 0.75 6 10–4 0.00 4 0.809 · 10–3 0.01 · 10–5 0.05
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5. Сеточные функции характеристик контакта штампов с РМР. Отдельные 
микровыступы штампа Пn(K) обозначим ϖi, i = 1, K, а множество микровысту-
пов штампа – через Dmp = {ϖi}, |Dmp| = K. Введем на множестве микровыступов 
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Рис. 1. Профили базового штампа П7
b (a) и микровыступов штампов семейства П7

s (б).
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Dmp сеточную координату i  = 1, K,  и обозначим через Гi часть Гp, соответству-
ющую микровыступу ϖi. Для каждого штампа Пn(K) введем следующие сеточ-
ные функции:
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Рис. 2. Профили штампов П7(16) (a) и П7(64) (б).
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– контактных усилий на микровыступах RK = [ri]:

	 ( ) ;
i

r p x dx
Γ

= ∫i 	 (5.1)

– относительных величин площадей фактического контакта на микровы-
ступах SK = [si]:

	 ( ) 0 ;
i

a
K

s p x dx
a

Γ

= >∫i [ ] 	 (5.2)

– максимумов контактного давления на микровыступах PK = [pi]:
	 max ( );

i

p p
Γ

=i x 	 (5.3)

– средних контактных давлений на микровыступах QK = [qi]:

	 ( ) / [ ( ) 0] ;
i i

aq p x dx p x dx
Γ Γ

= >∫ ∫i 	 (5.4)

– средних конечных зазоров на микровыступах ZK = [zi]:

	 ( ( ) ) ,
i

y c z y
K

z x x u dx
a

Γ

= Φ + d + − j −∫i 	 (5.5)

где p(x) – распределение контактного давления для штампа Пn(K); [·]a – скоб-
ка Айверсона (функция равная 1 для истинного аргумента и равная 0 в про-
тивном случае).

Далее построим для штампа Пn(K) с РМР множество микровыступов, кон-
тактирующих с полуплоскостью ( ) { : > 0}.c i mp iD D r= ϖ ∈RK  Введем ряд опре-
делений. Два микровыступа ϖi и ϖn являются ближайшими соседями, если 
|i – n| = 1. Два микровыступа ϖi ∈ Dc и ϖn ∈ Dc являются связанными с друг дру-
гом, если они либо сами являются ближайшими соседями, либо существует 
цепочка из микровыступов, являющихся ближайшими соседями и принад-
лежащих множеству Dc, соединяющая эти два микровыступа. Совокупность 
связанных между собой микровыступов называется кластером контактиру-
ющих микровыступов и обозначается Cm, где m = 1, ..., M – номер кластера. 
Микровыступ ϖi ∈ Cm принадлежит множеству Bm

1 граничных микровыступов 
кластера, если только один его ближайший сосед принадлежит множеству 
Cm. Микровыступ ϖi ∈ Cm принадлежит множеству Bm

2 приграничных микро-
выступов кластера, если один из его ближайших соседей принадлежит мно-
жеству Bm

1. Микровыступ ϖi ∈ Cm принадлежит множеству Cm
0 внутренних ми-

кровыступов кластера, если он не является граничным или приграничным, 
т.е. 0 1 2\ ( )m m m mC C B B= ∪ . Полагая, что 

	 0

1
= 0,

M

m
m

C
=

>∑k

введем оператор редукции ( ): K k
cD → F  исключающий из вектора компо-

ненты, соответствующие микровыступам 
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	 0

1

M

i m
m

C
=

ϖ ∉


. 

Оператор F является прямоугольной матрицей размеров k × K, в каждой стро-
ке которой имеется равно один ненулевой элемент, равный 1.

Для штампов рассматриваемого класса П(Ф1, Ф2, K) функция Ф1(x), харак-
теризующая их макроформу, является выпуклой, поэтому множество Dc кон-
тактирующих с полуплоскостью микровыступов имеет вид:

	 1 2{ , , },cD k k=    1 21 ,k k K≤ ≤ ≤

и является кластером C1 = Dc. Если 1 22 2k k+ ≤ − , то

	 1
1 1 2{ , }=B k k , 2

1 1 2{ + 1, 1}= −B k k , 0
1 1 2{ + 2, , 2}= −C k k

и может быть определен оператор редукции F(Dc): RK  →Rk, где  k = k2 – k1 – 3.
6. Сеточные функции контактных усилий базовых штампов без РМР. Вы-

полним равномерное разбиение TK отрезка [0, a] на K частей длиной h = a/K 
и построим равномерную сетку с узлами xi = (i – 0.5)h, i = 1, K. Разбиение TK 
производит разделение области возможного контакта Гр на подобласти Гi, со-
ответствующие отдельным микровыступам ϖi ∈ Dmp штампа Пn(K).

Введем для базового штампа Пn
b сеточные функции контактных усилий 

RK
b = [ri

b] и нормализованных контактных усилий [ ] :b b
K i=

R r

	
2

2

( )
+

−

= ∫
/

/

i

i

x h
b

i b

x h

r p x dx ,  ( )= /b b m
i i br r hp ,	 (6.1)

где pb(x) – распределение контактного давления для базового штампа Пn
b; 

pb
m = |Fy|/a – среднее контактное давление по области возможного контакта Гр. 

Интегрируемость неотрицательной функции pb(x) на отрезке [0, a] следует из 
третьего условия (2.3). Обозначим

	
0

( ) ( )= ∫
x

b bP x p t dt .	  (6.2)

Тогда из (6.1) и (6.2) получим, что

	
( 2) ( 2)1 + − −

=
/ /b b i b i

i m
b

P x h P x h
r

hp
 .

Если функция pb(x) является непрерывной в точке xi, то существует предел:

0 0

( / 2) ( /2) ( )1 1lim lim ( ),
i

b b i b i b b i
i b im m mh h x xb b b

P x h P x h dP p x
r p x

h dxp p p→ → =

+ − −
= = = =  	 (6.3)

где p~b(x) – нормализованное распределение контактного давления для ба-
зового штампа Пn

b. Следовательно, для множества сеточных функций нор-
мализованных контактных усилий b

K
R  при K → ∞ существует предельная 
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кривая – нормализованное распределение контактного давления p~b(x). Пред-
полагая pb(x) ∈ C2[xi – h/2, xi + h/2], несложно получить оценку:

	
2

*

[ / 2, / 2]
( ) max ( ) .

24 i i

b
i b i bm t x h x h

b

r p x p
p ∈ − +

− ≤ ′′

h t 	 (6.4)

7. Периодическая контактная задача. Контактное взаимодействие беско-
нечного в плане штампа Пn

p(K) с упругой полуплоскостью моделируется пе-
риодической задачей с периодом a/K. Для ее решения можно использовать 
как аналитические, так и численные методы.

С помощью решения периодической контактной задачи для штампа Пn
p(K) 

аналогично (5.2)–(5.4) введем следующие функции:
– относительных величин площадей фактического контакта на микровы-

ступах ϒs(p);
– максимумов контактного давления на микровыступах ϒp(p);
– средних контактных давлений на микровыступах ϒq(p);
– средних конечных зазоров на микровыступах ϒz(p),

где p ≡ pp
m – среднее контактное давление для бесконечного в плане штампа 

Пn
p(K).

8. Характеристики процесса вдавливания штампа. Рассмотрим процесс вдав-
ливания жесткого штампа в упругую полуплоскость при увеличении внешней 
нагрузки. Аналогично [11, 12] введем для штампа Пn

p(K) следующие характе-
ристики процесса контактного взаимодействия с упругой полуплоскостью – 
функции безразмерного параметра внешней нагрузки f:

– относительной величины площади фактического контакта штампа

	 11 ( ) 0 ( )
Γ

≡ > = L∫
p

a Ks p x dx f
a

[ ] ;

– осадки штампа dy = L2
K(  f  );

– угла поворота штампа jz = L3
K(  f  ).

9. Вычислительные алгоритмы. Для численного решения задач односто-
роннего дискретного контакта жестких штампов Пn(K) с РМР и упругой 
полуплоскости в настоящей работе применялся разработанный в работе [7] 
вычислительный алгоритм, основанный на вариационной формулировке 
контактной задачи и ее гранично-элементной дискретизации. Использова-
лись регулярные сетки одноузловых граничных элементов нулевого порядка. 
Этот же алгоритм применялся при решении задач для базовых штампов Пn

p 
без РМР. Необходимое количество граничных элементов определялось пу-
тем сравнения решений, полученных на вложенных сетках при их двукрат-
ном последовательном измельчении. При построении гранично-элементных 
сеток подобласть Гi, соответствующая одному микровыступу, разбивалась на 
Nbe = 1024 граничных элемента, т.е. общее количество граничных элементов на 
Гp составляло Nbe × K. Наибольшее количество элементов сетки для штампа с 
4096 микровыступами составляло 222 = 4 194 304 элемента.

Следует отметить, что разработанный в работе [7] вычислительный алго-
ритм позволяет определять не только вектор узловых нормальных напряже-
ний, но и перемещение dy и угол поворота jz жесткого штампа.
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Для численного решения периодических контактных задач для бесконеч-
ных в плане штампов Пn

p(K) применялся разработанный в работе [8] вычис-
лительный алгоритм, основанный на использовании дискретного преобразо-
вания Фурье при аппроксимации оператора Пуанкаре–Стеклова, отобража-
ющего в зоне возможного контакта нормальные напряжения в нормальные 
перемещения. Передаточная функция оператора Пуанкаре–Стеклова для 
упругой полуплоскости имеет вид:

	 *( ) 2 / ( ),G Ea = a

где a – параметр преобразования Фурье. Коэффициент расширения вычисли-
тельной области полагался равным единице. Дискретизация задачи произво-
дилась путем равномерного разбиения периода a/K на Nbe = 4096 одноузловых 
граничных элементов нулевого порядка.

При построений функций ϒs(p), ϒp(p), ϒq(p) и ϒz(p) для бесконечного в пла-
не штампа Пn

p(K) применялся следующий алгоритм. Определялось максималь-
ное усилие max 1

max i
i K

R r
≤ ≤

=  на микровыступах штампа Пn
p(K) с РМР и вычисля-

лось максимальное среднее давление pm
max = RmaxK/a для соответствующего ему 

штампа Пn
p(K). Далее производилось разбиение отрезка [0, pm

max] на Lp частей 
таким образом, чтобы их размеры увеличивались в геометрической прогрес-
сии по мере удаления от левого конца отрезка, а отношение длин наибольшего 
и наименьшего из отрезков составляло lp. В результате получена сетка {p0 = 0, 
p1, ..., pL = pm

max}. Далее производилось пошаговое нагружение штампа Пn
p(K) 

средним давлением pl, l = 1, ..., Lp и вычислялись значения сеточных функций 
ϒs(p) = {ϒs(pl)}, ϒp(p) = {ϒp(pl)}, ϒq(p) = {ϒq(pl)} и ϒz(p) = {ϒz(pl)}. Значения функ-
ций ϒs(p), ϒp(p), ϒq(p) и ϒz(p) для произвольного значения p ∈ [0, pm

max] вычис-
лялись путем линейной интерполяции значений соответствующей сеточной 
функции. При проведении расчетов полагалось, что Lp = 1024 и lp = 25.

Аналогичный алгоритм использовался для построения функций LK
i  (  f  ), 

i = 1, 2, 3, характеризующих процесс вдавливания жесткого штампа Пn(K) 
с РМР в упругую полуплоскость, при изменении безразмерного парамет-
ра внешней нагрузки f в интервале [0,  f  *]. Произведем разбиение интервала 
[0,  f  *] на Lf  частей таким образом, чтобы их размеры увеличивались в геомет-
рической прогрессии по мере удаления от левого конца интервала, а отноше-
ние длин наибольшего и наименьшего из отрезков составляло lf . В результа-
те получим сетку Tf = {  f0 = 0, f1, ..., fL = f  *}. Введем далее сеточные функции 
LK

i   = Rf LK
i  (  f  ), i = 1, 2, 3, где Rf – оператор ограничения на сетку Tf . Для вычис-

ления этих сеточных функций производилось пошаговое нагружение штампа. 
Значения функций LK

i  (  f  ), i = 1, 2, 3, для произвольного значения f  ∈ [0,  f  *] 
вычислялись путем линейной интерполяции значений соответствующей се-
точной функции. При проведении расчетов полагалось, что Lf = 256 и lf = 64.

Отметим одну особенность вычислительных алгоритмов решения кон-
тактных задач с использованием одноузловых граничных элементов нулевого 
порядка, т.е. элементов с постоянной аппроксимацией искомых контактных 
напряжений. Эти алгоритмы позволяют определить положения границ зон 
фактического контакта с точностью до размера граничного элемента и, как 
следствие, относительные величины площадей фактического контакта на 
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микровыступах (значения функций SK = [si] и ϒs(p)) изменяются дискретно с 
шагом Ds = 1/Nbe, а относительная величина площади фактического контакта 
штампа s = LK

1 (  f  ) изменяется дискретно с шагом Ds = 1/(Nbe × K). Отметим так-
же, что двукратное измельчение гранично-элементной сетки примерно вдвое 
уменьшает погрешность определения площади фактического контакта.

10. Результаты вычислительных экспериментов. Закономерности контактного 
взаимодействия штампов с РМР и упругой полуплоскости. При проведении вы-
числительных экспериментов использовано более тысячи различных семейств 
Пn

s штампов с РМР. В процессе обработки результатов расчетов для этих се-
мейств штампов установлена следующая закономерность: при увеличении 
числа K микровыступов уменьшаются относительные расхождения

	 ( )e = −, /b
m K K K mm

KR R R R

сеточных функций контактных усилий для штампов Пn(K) с РМР и соответ-
ствующих им базовых штампов Пn

b без РМР. Символ ||·||m обозначает гельде-
ровскую норму вектора с одним из показателей m = 1, 2, ∞. В качестве примера 
в табл. 2 приведены относительные среднеквадратичные расхождения e2(R, K) 
для семейств штампов, параметры которых и приложенных к ним внешних 
нагрузок указаны в табл. 1. Нетрудно видеть, что для всех семейств штампов 
среднеквадратичные расхождения e2(R, 4096) не превышают 0.664%. Следо-
вательно, при достаточно большом количестве микровыступов с приемлемой 
для инженерной практики точностью для штампа Пn(K) с РМР распределение 
контактных усилий на его микровыступах может быть вычислено по извест-
ному распределению контактного давления для соответствующего базового 
штампа Пn

b без РМР. Отметим, что наибольшие по абсолютной величине рас-
хождения компонент сеточных функций RK и RK

b наблюдались для граничных 
и приграничных микровыступов кластера C1, а для семейств штампов П3

s и П4
s , 

Таблица 2. Относительные среднеквадратичные расхождения 
5

2 2( ) 10 ( )e = ⋅ e, ,K K R R

Семейство
штампов

Количество микровыступов K
16 32 64 128 256 512 1024 2048 4096

П1
s 2475 1570 972 601 379 245 161 106 70.6

П2
s 5199 4289 3257 2321 1612 1057 680 436 279

П3
s 16532 10705 6987 4610 3068 2056 1387 942 643

П4
s 43.0 47.3 37.0 21.6 13.8 6.70 3.96 3.06 1.68

П5
s 4681 3264 2156 1372 849 515 310 183 106

П6
s 438 285 214 135 75.1 47.1 26.4 15.1 9.08

П7
s 5012 3861 1786 1232 829 553 348 180 107

П8
s 314 442 335 137 177 96.9 62.8 42.9 27.8

П9
s 307 46.6 41.8 63.6 40.2 20.8 17.5 9.12 4.91

П1
s
0 13092 8395 6085 5832 4198 2545 1815 1136 664
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базовые штампы которых имеют форму клина, – для центральных микровы-
ступов штампов.

Ранее в работе [8] для семейств штампов с РМР было установлено, что 
при вдавливании штампов в упругую полосу существует единая огибающая 
сеточных функций нормализованных контактных усилий на микровыступах 

[ ]ir=

RK , где / | |i ir r K F= y . В настоящей работе этот результат уточнен для 
упругой полуплоскости: на основании установленной закономерности и со-
отношений (6.3), (6.4) можно предположить, что для рассмотренных семейств 
Пn

s штампов с РМР при K → ∞ существует предельная кривая для сеточных 
функций нормализованных контактных усилий на микровыступах RK , в ка-
честве которой выступает распределение нормализованного контактного дав-
ления ( )bp x  для соответствующего базового штампа Пn

b без РМР. 
Кроме того, установлена еще одна закономерность: при достаточно 

большом количестве микровыступов ряд характеристик контакта для штампа 
Пn(K ) с РМР могут быть с приемлемой для инженерной практики точностью 
определены с помощью решения периодической задачи для бесконечного в 
плане штампа Пn

p(K ) по контактным усилиям на микровыступах RK
b = [ri

b], вы-
численным для базового штампа Пn

b.
Используя (5.2)–(5.5), вычислим для штампа Пn(K ) сеточные функции от-

носительных величин площадей фактического контакта SK, максимумов кон-
тактного давления PK, средних контактных давлений QK и средних конечных 
зазоров ZK на микровыступах. Далее вычислим сеточную функцию контакт-
ных усилий RK

b  для базового штампа Пn
b, построим множество Dc(RK

b ) микро-
выступов, контактирующих с полуплоскостью, и соответствующий оператор 
редукции F(Dc). Определим для множества C1

0 внутренних микровыступов 
кластера C1 = Dc относительные расхождения сеточных функций:

	 ( ) ( )e = − ϒ, / /b
m K s K K mm

K K aS FS F R FS ,

	 ( ) ( )e = − ϒ, / /b
m K p K K mm

K K aP FP F R FP ,

	 ( ) ( )e = − ϒ, / /b
m K q K K mm

K K aQ FQ F R FQ ,

	 ( ) ( )e = − ϒ, / /b
m K z K K mm

K K aZ FZ F R FZ .

Здесь и далее для краткости записи применение скалярной функции скаляр-
ного аргумента к сеточной функции означает покомпонентное применение 
этой функции к компонентам сеточной функции. Аналогичное правило дей-
ствует в отношении операции умножения сеточной функции на скаляр.

В табл. 3–6 приведены относительные среднеквадратичные расхожде-
ния e2(S, K ), e2(P, K ), e2(Q, K ) и e2(Z, K ) для семейств штампов, параметры 
которых и приложенных к ним внешних нагрузок указаны в табл. 1. Не-
трудно видеть, что для всех семейств штампов среднеквадратичные расхо-
ждения e2(S, 4096) не превышают 0.828%, e2(P, 4096) – 2.422%, e2(Q, 4096) – 
0.809%, e2(Z, 4096) – 0.0718%. Для сравнения в табл. 7 для штампов Пn(4096) 
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приведены относительные расхождения сеточных функций, вычисленные 
с использованием норм ||·||1 и ||·||∞. Отметим, что имеющиеся для некоторых 
штампов значительные различия результатов для этих норм связаны с неод-
нородным распределением контактных усилий по микровыступам.

Таким образом, для штампа Пn(K ) с РМР при достаточно большом коли-
честве микровыступов с приемлемой для инженерной практики точностью 
распределения относительных величин площадей фактического контакта, 
максимумов контактного давления, средних контактных давлений и средних 
конечных зазоров на его внутренних микровыступах ϖi  ∈  C1

0 могут быть опре-
делены с помощью решения периодической задачи для бесконечного в плане 

Таблица 3. Относительные среднеквадратичные расхождения 
5

2 2( ) 10 ( )e = ⋅ e, ,K K S S

Семейство
штампов

Количество микровыступов K
16 32 64 128 256 512 1024 2048 4096

П1
s 719 340 179 104 93.0 84.1 86.4 90.6 94.1

П2
s 467 273 187 129 114 102 102 102 104

П3
s 5461 3646 2387 1649 1312 1004 918 848 828

П4
s 109 80.4 51.3 52.8 43.4 47.2 54.6 59.3 62.3

П5
s 1157 590 310 204 196 216 226 235 220

П6
s 123 61.7 52.4 58.3 61.1 62.1 64.9 67.5 69.6

П7
s 310 214 208 189 195 201 205 206 207

П8
s 112 72.0 73.1 70.6 64.7 66.9 72.1 75.2 77.3

П9
s 77.0 68.5 61.3 52.4 50.6 60.2 62.5 63.7 64.6

П1
s
0 2545 966 899 773 612 513 471 448 445

Таблица 4. Относительные среднеквадратичные расхождения 
5

2 2( ) 10 ( )e = ⋅ e, ,K K P P

Семейство
штампов

Количество микровыступов K
16 32 64 128 256 512 1024 2048 4096

П1
s 730 312 136 64.4 30.9 29.7 62.7 113 185

П2
s 5112 3782 2931 2366 1989 1723 1539 1412 1327

П3
s 5673 3737 2428 1634 1131 743 482 327 303

П4
s 40249 27904 19547 13758 9708 6857 4846 3425 2422

П5
s 1248 659 340 205 163 143 127 119 86.1

П6
s 2970 2339 1539 1006 636 370 228 128 71.0

П7
s 1482 790 780 648 483 333 219 167 107

П8
s 5740 2612 1513 1185 752 541 318 189 109

П9
s 5336 2389 1461 1011 809 585 410 245 143

П1
s
0 9267 3192 2449 2331 1414 761 414 259 174
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штампа Пn
p(K ) по контактным усилиям на микровыступах RK

b , вычисленным 
для базового штампа Пn

b.
Также в процессе обработки результатов расчетов для бесконечных в плане 

штампов Пn
p(K ) установлена следующая закономерность: функции ϒs(p), ϒp(p), 

ϒq(p) и K ϒz(p) инвариантны относительно периода (размера микровыступа) 
a/K. Следовательно, при достаточно большом числе микровыступов относи-
тельные величины площадей фактического контакта, значения максимумов 
контактного давления и средних контактных давлений на его внутренних ми-
кровыступах ϖi  ∈  C1

0 практически не зависят от числа микровыступов, а зна-
чения средних конечных зазоров убывают обратно пропорционально числу 

Таблица 5. Относительные среднеквадратичные расхождения 
5

2 2( ) 10 ( )e = ⋅ e, ,K K Q Q

Семейство
штампов

Количество микровыступов K
16 32 64 128 256 512 1024 2048 4096

П1
s 690 275 126 64.9 70.1 67.5 74.5 76.6 80.3

П2
s 2229 1283 709 418 229 129 91.0 77.2 80.5

П3
s 5795 3800 2474 1784 1326 1047 838 807 809

П4
s 157 138 69.3 47.3 47.6 46.7 54.8 57.5 59.6

П5
s 1295 714 417 309 260 240 231 227 217

П6
s 134 85.9 80.3 69.6 65.9 65.8 67.4 68.9 70.0

П7
s 2062 1428 739 463 362 284 244 230 219

П8
s 173 147 107 70.7 71.6 694 70.8 72.9 75.0

П9
s 67.8 56.6 54.6 46.4 48.0 58.1 60.7 61.8 62.6

П1
s
0 7718 2339 2629 2542 1704 1021 643 495 436

Таблица 6. Относительные среднеквадратичные расхождения 
5

2 2( ) 10 ( )e = ⋅ e, ,K K Z Z

Семейство
штампов

Количество микровыступов K
16 32 64 128 256 512 1024 2048 4096

П1
s 1622 726 330 167 97.6 65.7 51.3 44.8 41.7

П2
s 633 381 229 137 80.4 43.8 23.4 13.3 8.98

П3
s 520 335 214 137 89.6 57.6 37.1 24.1 65.0

П4
s 3250 1067 403 215 112 71.6 34.0 15.6 12.6

П5
s 964 470 225 126 95.4 80.2 66.9 57.1 38.6

П6
s 1133 436 180 85.8 41.1 15.6 3.98 3.37 4.33

П7
s 134 98.2 47.2 25.0 14.5 9.07 5.94 4.54 2.90

П8
s 658 358 243 181 105 78.6 34.8 14.2 4.97

П9
s 1474 664 483 328 342 310 287 150 71.8

П1
s
0 47.6 15.5 20.0 20.4 13.2 7.48 4.01 2.10 1.18
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микровыступов. Отметим, что существование единой огибающей контактно-
го давления для однопараметрического семейства Пs(Ф1, Ф2) штампов с РМР 
при вдавливании в упругую полуплоскость впервые было установлено в рабо-
те [7], а существование единой огибающей относительных величин площадей 
фактического контакта при вдавливании штампов с РМР в упругую полосу – 
в работе [8].

В работах [11, 12] при исследовании методом вычислительного экспери-
мента процесса вдавливания штампов с РМР в функционально-градиентные 
и многослойные упругие полосы, сцепленные с недеформируемым основа-
нием, наблюдалась сходимость последовательностей сеточных функций от-
носительных величин площадей фактического контакта штампа L1

K, осадки 
штампа L2

K и угла поворота штампа L3
K при увеличении числа K микровысту-

пов. В настоящей работе при моделировании процесса вдавливания жестких 
штампов Пn(K ) с РМР в упругую полуплоскость установлена аналогичная за-
кономерность: при увеличении числа K уменьшаются относительные расхо-
ждения сеточных функций:

	 ( ) /i i i i
m K Q Q

m m
Ke = −L L L , i = 1, 2, 3,

где Q = 4096 – максимальное число микровыступов в серии расчетов.
Таким образом, на основании результатов проведенных вычислительных 

экспериментов можно предположить существование для рассмотренных се-
мейств Пn

s штампов с РМР при K → ∞ предельных кривых s = L1(  f  ), dy = L2(  f  ) 
и jz = L3(  f  ).

В качестве примера на рис. 3–5 приведены графики зависимостей  
s = L1

Q(  f  ), dy = L2
Q(  f  ) и jz = L3

Q(  f  ) для штампов Пn(Q), параметры которых 
указаны в табл. 1. Номера кривых 1–10 соответствуют номерам штампов 
n = 1, ..., 10. Отметим, что на рис. 4б кривые 2 и 10 практически совпали и ви-
зуально не различимы. При проведении расчетов полагалось, что f  * = 10–5, а 

Таблица 7. Относительные расхождения 510e = ⋅ em m

Штамп
( , 4096)me R ( , 4096)me S ( , 4096)me P ( , 4096)me Q ( , 4096)me Z

m = 1 m = ∞ m = 1 m = ∞ m = 1 m = ∞ m = 1 m = ∞ m = 1 m = ∞
П1(4096) 6.11 119 80.2 131 12.1 1161 73.8 51.2 37.7 56.1
П2(4096) 20.3 400 85.5 158 146 6058 73.8 87.3 7.91 122
П3(4096) 60.1 5908 686 4323 39.1 4555 674 4590 3.31 2655
П4(4096) 0.245 12.0 51.5 137 201 20 999 50.4 73.3 12.0 60.2
П5(4096) 20.2 2648 171 2280 14.1 2170 173 2146 7.40 712
П6(4096) 1.37 239 56.0 151 31.4 983 56.6 146 2.05 4.70
П7(4096) 19.7 2804 175 443 22.7 2326 183 1124 0.865 67.3
П8(4096) 2.56 769 64.0 156 34.7 1325 63.2 156 2.19 80.2
П9(4096) 0.500 122 53.4 127 44.2 2035 52.5 117 13.3 479
П10(4096) 115 8190 369 968 61.4 1950 372 1060 0.673 19.7
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Рис. 3. Зависимость относительной величины площади фактического контакта штампа от 
параметра внешней нагрузки s = L1

Q(  f  ) (номера кривых соответствуют номерам штампов 
Пn(Q)).
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Рис. 4. Зависимость осадки штампа от параметра внешней нагрузки dy = L2
Q(  f  ) (номера 

кривых соответствуют номерам штампов Пn(Q)).
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значение безразмерного параметра e, характеризующего эксцентриситет рав-
нодействующей внешней нагрузки, для каждого штампа принималось равным 
указанному в табл. 1. Нетрудно видеть, что относительная величина площади 
фактического контакта штампа s = L1

Q(  f  ) и осадка штампа dy = L2
Q(  f  ) возраста-

ют с увеличением внешней нагрузки. Угол поворота штампа jz = L3
Q(  f  ) также 

возрастает с увеличением внешней нагрузки для штампов всех рассмотрен-
ных семейств Пn

s, кроме П4
s, базовый штамп которого имеет форму клина. При 

приложении внешней нагрузки с эксцентриситетом относительно вершины 
клина штамп мгновенно поворачивается на угол jz*  = 90° – a, где a – угол по-
лураствора клина. С увеличением нагрузки угол поворота штампов семейства 
П4

s убывает. Зависимости jz = L3
Q(  f  ) для штампов с номерами n = 1, 3, 5, 7, 9, 

для которых параметр e = 0, не представлены на рис. 5, так как полученные 
численные значения jz для параметра f ∈ [0, f  *] по абсолютной величине не 
превышали 3 · 10–15.

Все проведенные в данной работе расчеты выполнялись для упругой полу-
плоскости, модуль Юнга которой полагался равным E = 105 МПа, а коэффи-
циент Пуассона – равным n = 0.3.

11.  Приближенный расчет характеристик контакта поверхностей с РМР 
(плоская задача). Пусть макроформа и РМР контактирующих тел таковы, что 
для определения напряженно-деформированного состояния тел может быть 
использовано решение Фламана задачи о действии сосредоточенной нор-
мальной силы на границе упругой полуплоскости. В этом случае при моде-
лировании локального контактного взаимодействия двух упругих тел может 
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Рис. 5. Зависимость угла поворота штампа от параметра внешней нагрузки jz = L3
Q(  f  ) (но-

мера кривых соответствуют номерам штампов Пn(Q)).
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быть использована расчетная схема, в которой одно из тел считается жестким 
штампом, а второе – упругой полуплоскостью с приведенным модулем упру-
гости. Также предполагается, что в зоне контакта находится достаточно 
большое количество, по крайней мере несколько сотен микровыступов.

На основе установленных методом вычислительного эксперимента зако-
номерностей для штампов с РМР предлагается следующая методика прибли-
женного расчета распределения нагрузок между элементами РМР, а также 
оценки контактного давления, размеров площадок фактического контакта и 
средних конечных зазоров на микровыступах.

На первом шаге аналитически или численно определяется распределение 
контактного давления для базового штампа без РМР. Далее производится рав-
номерное разбиение области возможного контакта Гр на отрезки, соответству-
ющие отдельным микровыступам РМР, и вычисляются контактные усилия на 
этих отрезках, т.е. вычисляется сеточная функция RK

b.
На втором шаге решается периодическая контактная задача для беско-

нечного в плане штампа, РМР которого идентичен РМР рассматриваемого 
штампа конечных размеров, и определяются аналитически или численно с 
помощью описанного выше в п. 8 алгоритма функции ϒs(p), ϒp(p), ϒq(p) и ϒz(p).

На завершающем шаге вычисляются приближенные распределения по 
микровыступам рассматриваемого штампа с РМР (сеточные функции) отно-
сительных величин площадей фактического контакта SK

* = ϒs(RK
b K/a), макси-

мумов контактного давления PK
* = ϒp(RK

b K/a), средних контактных давлений 
QK

* = ϒq(RK
b K/a) и средних конечных зазоров ZK

* = ϒz(RK
b K/a).

Отметим, что если контактное давление для базового штампа без РМР 
ограничено во всей области контакта, то на ее краях оно стремится к нулю, 
а контактные усилия и, следовательно, контактные напряжения на гранич-
ных и приграничных микровыступах соответствующего штампа с РМР будут 
малы по сравнению с аналогичными характеристиками для его внутренних 
микровыступов.

12. Заключение. В настоящей работе рассмотрена задача дискретного кон-
такта жесткого штампа с РМР и упругой полуплоскости. С учетом результатов 
работ [8, 11, 12] можно предположить, что установленные для полуплоскости 
закономерности контактного взаимодействия могут быть обобщены на слу-
чай упругой полосы как однородной, так и функционально-градиентной или 
многослойной. Также с учетом результатов работы [13] представляет интерес 
исследование аналогичных закономерностей для пространственных задач 
о вдавливании штампов с РМР в упругое полупространство или слой.

СПИСОК ЛИТЕРАТУРЫ

1.	  Шнейдер Ю.Г. Эксплуатационные свойства деталей с регулярным микрорельефом. 
СПб.: СПб ГИТМО (ТУ), 2001. 264 с.

2.	  Горячева И.Г. Механика фрикционного взаимодействия. М.: Наука, 2001. 478 с.
3.	  Горячева И.Г., Цуканов И.Ю. Развитие механики дискретного контакта с приложе-

ниями к исследованию фрикционного взаимодействия деформируемых тел (Об-
зор) // ПММ. 2020. Т. 84. Вып. 6. С. 757–789.

	 https://doi.org/10.31857/S0032823520060053



	О  ЗАКОНОМЕРНОСТЯХ КОНТАКТНОГО ВЗАИМОДЕЙСТВИЯ...� 159

4.	  Goryacheva I.G., Tsukanov I.Y. Analysis of elastic normal contact of surfaces with regular 
microgeometry based on the localization principle // Front. Mech. Eng. 2020. V. 6. 
Article 45.

	 https://doi.org/10.3389/fmech.2020.00045
5.	  Цуканов И.Ю. К вопросу о контакте волнистого цилиндра и упругой полуплоско-

сти // ПММ. 2022. Т. 86. Вып. 5. С. 685–694.
	 https://doi.org/10.31857/S0032823522050125

6.	  Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. 510 с.
7.	  Бобылев А.А. Применение метода сопряженных градиентов к решению задач 

дискретного контакта для упругой полуплоскости // Изв. РАН. МТТ. 2022. № 2. 
С. 135–153.

	 https://doi.org/10.31857/S0572329922020052
8.	  Бобылев А.А. Алгоритм решения задач дискретного контакта для упругой полосы // 

ПММ. 2022. Т. 86. Вып. 3. С. 404–423.
	 https://doi.org/10.31857/S0032823522030031

9.	  Мусхелишвили Н.И. Некоторые основные задачи математической теории упруго-
сти. М.: Наука, 1966. 708 с.

10.	  Бобылев А.А. О положительной определенности оператора Пуанкаре-Стеклова для 
упругой полуплоскости // Вест. Моск. ун-та. Сер. 1. Матем. Механ. 2021. № 6. 
С. 34–40.

11.	  Бобылев А.А. Задача одностороннего дискретного контакта для функционально-
градиентной упругой полосы // Вест. Моск. ун-та. Сер. 1. Матем. Механ. 2024. 
№ 2. С. 58–69.

	 https://doi.org/10.55959/MSU0579-9368-1-65-2-8
12.	  Бобылев  А.А. Алгоритм решения задач одностороннего дискретного контакта 

для многослойной упругой полосы // Прикл. мех. и техн. физ. 2024. Т. 65. № 2. 
С. 230–242.

	 https://doi.org/10.15372/PMTF202315415
13.	  Бобылев А.А. Алгоритм решения задач дискретного контакта для упругого слоя // 

Изв. РАН. МТТ. 2023. № 2. С. 70–89.
	 https://doi.org/10.31857/S0572329922100129

ON REGULARITIES OF CONTACT INTERACTION OF SURFACES 
WITH REGULAR MICRORELIEF (PLANE PROBLEM)
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Abstract – We consider plane contact problems with a limited contact area for elas-
tic bodies with a regular microrelief (RMR) applied to their surfaces. It is assumed 
that Flamant’s solution to the problem of the action of a concentrated normal force 
on the boundary of an elastic half-plane can be used to determine the stress-strain 
state of bodies. When modeling the contact interaction, a calculation scheme was 
used in which one of the bodies is considered as a rigid punch, and the second 
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is considered as an elastic half-plane with a composite modulus of elasticity. The 
single-parameter families of punches with RMR are considered, the parameter of 
which is the number of microprotrusions. The regularities of contact interaction 
of punches with RMR and elastic half-plane were investigated by the method of 
computational experiment. Based on the established patterns, a method for ap-
proximate calculation of load distribution between RMR elements, as well as as-
sessment of contact pressure, sizes of actual contact areas and average final gaps on 
microprotrusions is proposed.

Keywords: problem of unilateral discrete contact, surface with regular microrelief
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