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Рассматривается плоская задача о равновесии тяжелого однородного 
тонкого проволочного треугольника, подвешенного на тонком гори-
зонтальном гвозде. Изучается существование положений равновесия и 
их зависимость от коэффициента трения и длин сторон треугольника 
в предположении о наличии силы сухого трения, действующей между 
треугольником и гвоздем. Задача решается в барицентрических коорди-
натах, связанных с системой вершин рассматриваемого треугольника. 
Условие равновесия записывается в форме, позволяющей циклическим 
сдвигом индексов входящих в него величин получить условие равнове-
сия для любой из сторон треугольника, которой он контактирует с гвоз-
дем.

Ключевые слова: равновесия тяжелого твердого тела, сухое трение, конус 
трения

DOI: 10.31857/S1026351925030071, EDN: azwuid

1. Введение. Задача о равновесии систем с трением – классическая за-
дача механики, неотъемлемо представленная как в хрестоматийных, так и 
в современных учебниках и монографиях [1–9] – тема исследования, не 
теряющая своей актуальности и по сей день [10–15]. Задача, о которой пой-
дет речь, заимствована из работы [5] (пункт 178, пример 27), но приводится 
здесь в адаптированном изложении.

В работе рассматривается плоская задача о равновесии тяжелой одно-
родной проволоки, изогнутой в виде контура треугольника и подвешен-
ной на тонком горизонтальном гвозде. Изучаются положения равновесия, 
а также их зависимость от коэффициента трения и длин сторон треуголь-
ника в предположении о наличии силы сухого трения, действующей между 
треугольником и гвоздем. Для описания положения точки контакта отно-
сительно треугольника используются возникающие естественным образом 



	 БАРИЦЕНТРИЧЕСКИЕ КООРДИНАТЫ В ЗАДАЧЕ О РАВНОВЕСИИ...� 129

барицентрические координаты. Важной особенностью этих координат яв-
ляется их однородность, благодаря которой получаемые результаты записы-
ваются в симметричном виде.

Множество ярких примеров применения барицентрических координат 
в различных задачах химии (металлургия, колориметрия) [16], популяцион-
ной генетики [17] (см. также [16]), теории цвета [18], теории интерполяции 
[19], компьютерной графики и вычислительной механики [20], климатологии 
[21], динамики гравитирующих тел [22], теории управления [23], а также ин-
тенсивная работа над книгой [24] побудили автора выполнить предлагаемое 
исследование.

2. Постановка задачи. Тяжелая однородная проволока изогнута в виде 
контура треугольника A1A2A3 и подвешена на шероховатом гвозде P за сто-
рону A1A2. Требуется определить положения равновесия такого треугольника 
в предположении, что в точке его контакта с гвоздем действует сила сухо-
го трения с коэффициентом трения, равным m. Толщина проволоки, а также 
толщина гвоздя предполагаются пренебрежимо малыми по сравнению с раз-
мерами треугольника.

3. Решение. Как известно (см., например, [3, 5], а также [24]), твердое тело, 
имеющее одну точку касания P с другим телом (опорой), будет находиться 
в равновесии если и только если силы, приложенные к телу, будут иметь рав-
нодействующую, равную и прямо противоположную силе реакции опоры, то 
есть проходящую через точку контакта, направленную так, чтобы прижимать 
изучаемое тело к опоре, и образующую с осью конуса трения угол, меньший, 
чем угол трения e: tg e = m.

В случае, когда тело, имеющее одну общую точку контакта с опорой, нахо-
дится в поле силы тяжести, центр инерции тела и точка контакта располага-
ются на одной вертикали, в противном случае возникнет момент силы, выво-
дящий тело из равновесия, см., например, [15]. Это позволяет рассматривать 
в качестве точки приложения силы тяжести точку контакта тела с опорой.

Для треугольника A1A2A3, подвешенного за сторону A1A2 на гвоздь P, в точке 
контакта построим конус трения с вершиной в этой точке, осью, ортогональ-
ной стороне A1A2, и углом раствора при вершине, равным 2e. Таким образом, 
граничными точками множества неизолированных равновесий будут те точки 
стороны A1A2, для которых образующая конуса трения проходит ровно через 
центр масс – точку M – треугольника A1A2A3, см. рис. 1.

Для описания точек множества неизолированных равновесий воспользу-
емся системой барицентрических координат, естественно возникающей при 
рассмотрении треугольника A1A2A3 в качестве базисного.

3.1. Барицентрические координаты и работа с ними. Под барицентрически-
ми координатами точки Q на плоскости, связанными с заданным базисным 
треугольником A1A2A3, будем понимать тройку вещественных чисел d1, d2, d3, 
удовлетворяющих условию нормировки:
	 d + d + d =1 2 3 1, 	 (3.1)
и таких, что для произвольной точки O справедливо следующее соотношение 
между векторами:
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	 = d + d + d1 1 2 2 3 3.OQ OA OA OA 	 (3.2)

Равенство (3.2) будет справедливо для любой точки O, если оно выполня-
ется для какой-либо одной точки, а точка Q однозначно определяет тройку 
(d1, d2, d3), см., например, [16].

Величины d1, d2, d3 можно рассматривать как веса со знаком. Если их по-
местить в вершины базисного треугольника A1A2A3, то рассматриваемая точка 
Q будет центром масс системы материальных точек d1A1, d2A2, d3A3. Так, вер-
шины базисного треугольника имеют барицентрические координаты (1, 0, 0), 
(0, 1, 0), (0, 0, 1) соответственно.

Для однородного проволочного треугольника A1A2A3 с длинами сторон 
A1A2 = l3 (1, 2, 3), барицентрические координаты центра масс – точки M – име-
ют вид:

	 ( ) ( ) ( )
, , .2 3 1 3 1 2

1 2 3
1 2 3 1 2 3 1 2 32 2 2

+ + +
m = m = m =

+ + + + + +
     

        

	 (3.3)

К этому результату приводят, например, следующие рассуждения, см., 
например, [16], а также [25]. Пусть r

l

 – линейная плотность проволоки. Со-
средоточив массы сторон треугольника в их серединах, приходим к системе 
масс, центр масс которой совпадает с центром масс M проволочного треуголь-
ника A1A2A3. Далее рассредоточим каждую из масс r

l

l1 (1,2,3) поровну в вер-
шины A2, A3 (1,2,3). Точка M окажется центром масс системы материальных 
точек:

	 ( ) ( ) ( ), , .2 3 1 1 3 2 1 2 3
1 1 1
2 2 2

A A Ar + r + r +
  

     

M

H

A1

A3

A2

P2
3

P1
3

ε

Рис. 1. Проволочный треугольник A1A2A3. P1
3, P2

3 – граничные точки множества неизоли-
рованных равновесий на стороне A1A2.
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Разделив массы точек на суммарную массу r
l

(l1 + l2 + l3), получаем бари-
центрические координаты (3.3) точки M.

В барицентрических координатах можно вычислять расстояния между 
двумя точками, см., например, теорему 10 из § 9 книги [16]. Пусть точки P 
и Q имеют относительно треугольника A1A2A3 барицентрические координаты 

1 2 3( , , )p p p  и 1 2 3( , , )d d d  соответственно. Расстояние между ними вычисляется 
по формуле:

( )( ) ( )( ) ( )( ) .2 2 2 2
1 1 2 2 3 1 1 3 3 2 2 2 3 3 1PQ = − p − d p − d − p − d p − d − p − d p − d    	 (3.4)

Воспользуемся этой формулой для определения барицентрических коор-
динат точки H – основания перпендикуляра, опущенного к стороне базисно-
го треугольника из произвольной точки Q с координатами 1 2 3( , , )d d d . Пусть 
для определенности требуется найти координаты основания перпендику-
ляра, опущенного из точки Q к стороне A1A2, то есть координаты точки H: 
(c, 1 – c, 0), представленные с учетом принадлежности H стороне A1A2 и нор-
мировочного выражения (3.1). Перпендикуляр от точки до прямой характе-
ризуется тем свойством, что это кратчайшее расстояние от точки до прямой. 
Поэтому величина c должна минимизировать HQ, а значит, согласно формуле 
(3.4) имеем:
	 ( )( ) ( ) ( ) min.2 2 2

1 2 3 1 3 2 2 3 11 1
c

− c − d − c − d + c − d d + − c − d d →  

Выражение слева является квадратным трехчленом относительно c:

	 ( )( )2 2 2 2 2 2 2
3 1 3 2 3 3 2 1 3c + c −d + d + d − − +     

	 ( ).2 2 2 2 2
1 2 3 1 3 2 2 3 1 1 3 3 1+ −d d − d d − d d + d + d    

Принимая во внимание условие (3.1), минимальное значение HQ дости-
гается при

	
2 2 2
1 2 3

1 32
32

− +
c = d + d

  



и равно

	 ,3

3
2HQ S

d
= ⋅



	 (3.5)

где S – площадь треугольника A1A2A3.
Циклические сдвиги координат, а также индексов 1 → 2 → 3 → 1 позволяют 

получить координаты оснований перпендикуляров, опущенных из точки Q 
к сторонам A2A3 и A3A1 соответственно:

	 ( ), , , ,
2 2 2
1 2 3

2 12
1

0 1
2

+ −
c − c c = d + d

  



	 ( ), , , .
2 2 2
1 2 3

3 22
2

1 0
2

− + +
− c c c = d + d

  


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Длины этих перпендикуляров соответственно равны 2S · |d1|/l1 и 2S · |d2|/l2.
Замечание. В обозначениях, предложенных Джоном Хортоном Конвеем1 

(см., например, [28]) после сокращения и числителя, и знаменателя на об-
щий множитель, барицентрические координаты основания перпендикуляра, 
опущенного из точки Q к стороне A1A2 базисного треугольника, примут вид:

	
 
d + d d + d + + 

2 1
1 3 2 3

1 2 1 2

cot cot
, , 0 .

cot cot cot cot
A A

A A A A

Координаты представляются в симметричном виде. Углы при вершинах 
базисного треугольника наследуют обозначения соответствующих вершин.

3.2. Равновесия. Существование и зависимость от параметров задачи. 
Для определения координат граничной точки контакта P1

3 на стороне A1A2 
рассмотрим треугольник MHP1

3. В этом треугольнике угол ∠MP1
3H = e, поэто-

му P1
3H = HM tge = HMm. Принимая во внимание (3.3) и (3.5), находим:

	 ( )
.1 2

1 2 3 3

MH S
+

=
+ +
 

   

Принимая во внимание, что точка P1
3 с координатами (p1

3, 1 – p1
3, 0) является 

центром масс двух материальных точек p1
3A1 и  (1 – p1

3)A2, ее координаты могут 
быть определены из соотношения:

	 ( )p ⋅ = − p ⋅3 3 3 3
1 1 1 1 1 21 .A P P A

Они равны:

	 ( ) − + − + +
p − p p = + m

+ +

2 2 2
3 3 3 1 2 3 1 3 2 3 1 2
1 1 1 2 2

1 2 33 3

2
,1 ,0 , .

4

S        

  

 

Аналогично находятся координаты второй граничной точки контакта P2
3. 

Они равны:

	 ( ), , , .
− + − + +

p − p p = − m
+ +

l l l l l l l l l

l l l

l l

2 2 2
3 3 3 1 2 3 1 3 2 3 1 2
2 2 2 2 2

1 2 33 3

2
1 0

4

S

Точкам отрезка P1
3P2

3, расположенного симметрично относительно H, отве-
чают равновесия треугольника. В случае отсутствия трения, то есть при m = 0, 
равновесию на стороне A1A2 отвечает единственная точка H с координатами:

	 ( ) ( )
, , , .1 3 1 2 3 2

2
3

1 1
0

2 2 4

− − − + l − l l = 
 

     



1 (англ. John Horton Conway; 26 декабря 1937 – 11 апреля 2020). Выдающийся 
британский математик с широким кругом научных интересов [26]. Известен, 
в частности, как создатель клеточного автомата под названием Игра “Жизнь” (англ. 
Game of Life) [27].
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В этой точке вес треугольника компенсируется нормальной составляющей 
реакции, и сторона A1A2 располагается горизонтально. Для равнобедренного 
треугольника l1 = l2 равновесию отвечает середина A1A2. Параметр l харак-
теризует смещение положения равновесия относительно середины стороны 
A1A2. При отличном от нуля коэффициенте трения точка H является порожда-
ющей для семейства неизолированных равновесий. Сторона A1A2 составляет 
с горизонтом ненулевой угол j, такой что

	 ( )( ) ( ) ,
+ +

j = − + − p − +
+

l l l

l l l l l l l

l l

2 2 2 1 2 3
1 2 3 1 3 2 3

1 2

tg 2 1 2
4S

где (p, 1 – p, 0) – координаты точки подвеса треугольника.
Выпишем условие, которому должен удовлетворять коэффициент трения, 

чтобы треугольник находился в безразличном равновесии, то есть мог быть 
подвешен в любой точке стороны A1A2. Это выполняется, если

	
( )
( )
+ +

> ⇒ m >
+

2
1 2 33 3 3

1 2 1 2
1 2

.
2

P P A A
S

  



 

В случае, когда l3 наибольшая из сторон треугольника, этого условия также 
достаточно, чтобы треугольник находился в равновесии при подвешивании в 
любой своей точке.

3.3. Другая задача, где также находят свое применение полученные результа-
ты. Рассмотрим еще одну задачу, где полученные результаты оказываются 
также полезными. Следуя [5] (пункт 176, пример 4, см. также [24], где изложе-
но решение, отличное от предлагаемого здесь), рассмотрим два однородных 
стержня A1A2 и A1A3, жестко соединенных под прямым углом в точке A1. Стер-
жень A1A2 выступает за край стола. Найдем наибольшую длину выступающей 
части A1A2 и покажем, что если коэффициент трения больше, чем

	  
( )+1 2 1 2 1 3

2
1 3

2A A A A A A

A A
, 

то система может висеть, опираясь на край только концом A2.
Пусть A1A2 = l3 (1, 2, 3), тогда для рассматриваемого уголка барицентриче-

ские координаты центра масс – точки M – имеют вид:

	 ( ) ( )m = m = m =
+ +
3 2

1 2 3
2 3 2 3

1
, , .

2 2 2

 

   

Барицентрические координаты точки H – основания перпендикуляра, 
опущенного к A1A2 из центра масс M – имеют вид:

	 ( ) ( )
, , .2 2

1 2 3
2 3 2 3

1 1
0

2 22 2
c = + c = − c =

+ +
 

   

При фиксированном коэффициенте трения m наибольшая длина выступа-
ющей части A1A2 равна:
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	 ( )
.

2 2
3 3 2

1 2 1
2 32

A H HP A H HM
+ m

+ = + m =
+

 

 

Наконец, уголок может висеть, опираясь на край стола только концом A2 
при

	 ( )
+ m

>
+

2 2
3 2

3
2 3

.
2

 



 

Следовательно, указанное равновесие реализуется при всех m, больших чем 
(2l2 + l3)l3/l2

2.

Заключение. В работе решена плоская задача о равновесиях тяжелого 
однородного тонкого проволочного треугольника, подвешенного на тон-
ком горизонтальном гвозде. Вычислены барицентрические координаты то-
чек множеств неизолированных равновесий. Выполнен анализ зависимости 
найденных решений от значения коэффициента трения и величин длин сто-
рон треугольника. Сформулирована и решена задача, в которой полученные 
результаты также находят свое применение.

В заключение отметим следующее. В работе [29] рассмотрена плоская за-
дача о движении, в частности, о равновесии материальной точки при наличии 
связей, границы которых имеют особые точки. Особое внимание уделялось 
случаю, когда при переходе через такие точки касательный вектор менял 
направление на противоположное. В работе сформулирована рекомендация, 
указывающая на необходимость отказа в данном классе задач от идеализиро-
ванного понятия материальной точки и введения в рассмотрение диска или 
шара конечного размера. Если руководствоваться этим замечанием в рассмот-
ренной задаче и считать, что диаметр гвоздя – величина конечная, то задача о 
равновесиях треугольника на таком гвозде, располагающемся в окрестности 
какой-либо из его вершин и имеющем по точке контакта с прилегающими 
к вершине сторонами, сводится к анализу условий, при которых вертикаль, 
проходящая через центр масс треугольника, пересекает четырехугольник, об-
разованный в пересечении конусов трения, построенных в точках контакта 
гвоздя и сторон треугольника.
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BARYCENTRIC COORDINATES IN THE EQUILIBRIUM PROBLEM 
OF  A HEAVY ROUGH TRIANGLE SUSPENDED ON A PIN

E. A. Nikonovaa, *
aFRC CSC RAS, Moscow, Russia

*e-mail: nikonova.ekaterina.a@gmail.com

A planar equilibrium problem of a heavy homogeneous thin wire triangle suspended 
on a thin horizontal nail is considered. The existence of equilibrium positions and 
their dependence on the coefficient of friction and the lengths of the sides of the 
triangle are studied under the assumption of the presence of a dry friction force 
acting between the triangle and the nail. The problem is solved in barycentric 
coordinates associated with the vertex system of the triangle in question. The 
equilibrium condition is written in a form that allows a cyclic shift of the indices of 
the quantities included in it to obtain an equilibrium condition for any of the sides 
of the triangle with which it contacts the nail.

Keywords: equilibria of a heavy solid, dry friction, friction cone
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