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Рассматривается модель сплошной среды Ивлева–Спорыхина (модель 
упрочняющегося упруговязкопластического тела), учитывающая как 
обратимые, так и необратимые деформации с целью исследования эво-
люционных процессов в полом шаре, находящемся под действием неста-
ционарного температурного поля. В ходе решения поставленной задачи 
получено аналитическое выражение для распределения температуры 
в  теле, построено обобщенное дерево эволюции областей упругости, 
пластического течения, разгрузки и повторной пластичности, а также 
построены выражения для радиальной компоненты напряжений и пере-
мещений в данных областях. Выполнено сравнение четырех реологиче-
ских моделей, учитывающих различные реологические свойства среды.
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1. Введение. Исследования в области механики материалов [1–4] пока-
зывают, что поведение твердых тел в процессе деформирования значитель-
но зависит от условий, в которых они находятся. Понимание процессов 
обратимого и необратимого деформирования используемых в строитель-
стве [6], аэрокосмической отрасли [7] и биомедицине [8] шаров, в том чис-
ле полых, критически важно для оценки их долговечности и надежности, 
поскольку напряженно-деформированное состояние данных объектов при 
нагреве может сильно варьироваться.

Неравномерный нагрев приводит к возникновению в теле темпера-
турных градиентов [5] и, соответственно, к механическим напряжениям. 
Поэтому важно выяснить, как развиваются области деформирования и ка-
кие факторы на это влияют.

В статье рассматривается влияние изменения температуры на напряжен-
но-деформированное состояние полого шара с учетом сложной реологии 
(в том числе механизмов вязкого деформирования и упрочнения). Кроме 
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того, выведены основные закономерности, что в дальнейшем поможет лучше 
понять поведение подобного класса структур при изменении температурных 
условий и разработать методы для их эффективного анализа.

2. Постановка задачи. Полый шар, радиусы внутренней и внешней поверх-
ности которого равны соответственно R1 и R2, в начальный момент времени 
t  = 0 имеет равномерно распределенную температуру T0. Внешняя поверх-
ность шара подвержена нестационарному тепловому воздействию по закону:
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где T(r, t) – распределение температуры, r – пространственная координата 
точки, x – скорость нагрева, T0 – начальная температура тела, Tm – макси-
мальная температура нагрева.

Внешняя и внутренняя поверхности шара свободны от усилий. Массовые 
силы также отсутствуют. Требуется определить напряженно-деформирован-
ное состояние тела в процессе его нагрева.

Постановки задачи, аналогичные представленной, приведены в работе [9] 
для упругопластического материала и в работе [10] для сплошного шара.

3. Решение задачи. Процесс решения поставленной задачи разделяется 
на два последовательных этапа: решение задачи нестационарной теплопро-
водности и непосредственное определение напряженно-деформированного 
состояния.

3.1. Задача теплопроводности. Нестационарное уравнение теплопроводно-
сти [11] вместе с начальными и граничными условиями в сферической систе-
ме координат записывается в виде:
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Здесь Ĵ  – коэффициент температуропроводности.
Граничное условие (3.4) является условие теплоизоляции внутренней по-

верхности шара.
Введем в соотношениях начально-краевой задачи (3.1)–(3.4) подстановку:
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и перейдем к безразмерным координатам:
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Здесь x = (r – R1)/(R2 – R1) – безразмерная координата, J = J/(R2 – R1)2 – при-
веденный коэффициент температуропроводности, h = (R2 – R1)/R1.

Следуя [11], выпишем решение задачи (3.6):
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где mn – корни уравнения tan(mn) + mn/h = 0.
Тогда окончательное выражение для безразмерной температуры примет 

вид:
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3.2. Напряженно-деформированное состояние. Поскольку имеет место слу-
чай сферической симметрии, все величины в направлениях j и q принима-
ются попарно равными, а частные производные любой функции по направ-
лениям j и q обращаются в нуль. Ниже приведем полную систему уравнений 
задачи механики деформируемого твердого тела для рассматриваемой модели 
среды.

Уравнение равновесия сводится к виду:
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+ s − s =

∂
2

0r
rr r

,	 (3.8)

где sr, sj – радиальная и окружная компоненты тензора напряжений.
Условие пластичности для модели среды Ивлева–Спорыхина [12] имеет 

форму:
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где Sr, Sj – радиальная и окружная компоненты девиатора тензора напря-
жений, er

p, ejp – радиальная и окружная компоненты тензора пластических 
деформаций, c – коэффициент упрочнения, h – коэффициент вязкости, 

( , )k r t  – предел текучести.
Ассоциированный закон пластического течения, описывающий прираще-

ния пластических деформаций:
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где y – скалярный положительный множитель. Из  следует пластическая не-
сжимаемость материала:
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 (тело 
находится в упругом состоянии). Тогда  примет вид:
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Преобразовывая (3.9) с учетом (3.12), получим:
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k r t k r t  условие пластичности запишется в форме:
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Как и в работе [9], рассматривается линейно зависящий от температуры 
предел текучести материала ( )0( , ) 1 ( , ) ,k r t k r t= − υD  где k0 – предел текучести 
при начальной температуре, υ  – параметр материала, D(r, t) = a(T(r, t) – T0), 
a – коэффициент температурного расширения.

Закон Дюамеля–Неймана имеет вид:
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где j,e e
re e  – радиальная и окружная компоненты тензора упругих деформаций.

Уравнения для полных деформаций и соотношения Коши записываются 
в форме:
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где er, ej – радиальная и окружная компоненты тензора полных деформаций.
Дополняя систему уравнений (3.8), (3.12), (3.13)–(3.15) условиями свобод-

ных от усилий поверхностей шара sr(R1, t) = sr(R2, t) = 0, получим полную си-
стему уравнений.
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Как и в работе [10], отыскание неизвестных величин будем проводить 
в форме:
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где h[n, j] – коэффициенты, определяемые соотношением:
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Тогда система уравнений (3.8), (3.12), (3.13)–(3.15) примет следующий вид 
(для удобства индексы [n, j] опущены):

	

( )
( )( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,

,

.

,

,

,

,

,

2
0

2

2 0

2 2 3 2

2 2 3 2

r
r

p p
r r

p p
r

e e e
r r r

e e e
r

e p
r r r r r

pe p e r

r r

c h e c h e k r

e e

e e e r

e e e r

e e e u

u
e e e e e e

r

j

j j

j

j

j q j j

j j q j qq

∂s
+ s − s =

∂

s − − h − s − − h =

+ =

s = l + + m − l + m D

s s = l + + m − l + m D

+ = =

+ = + = =

=

=

	 (3.17)

Нетрудно видеть, что получаемые в ходе решения задачи  выражения для 
напряжений, деформаций и перемещений имеют вид, аналогичный приве-
денному в работе [10] для случая сплошного шара, с точностью до границ и 
констант интегрирования.

В общем случае (когда нагрев происходит не только на внешней, но и на 
внутренней поверхности шара) в зависимости от свойств материала и скоро-
сти изменения температуры возможны различные варианты возникновения, 
развития и вырождения областей с отличающимися реологическими свой-
ствами. На рис. 1 представлено дерево эволюции указанных зон, для которого 
приняты следующие обозначения:

•	 E – упругая область;
•	 P – области пластического течения;
•	 U – зоны разгрузки;
•	 R – области повторного пластического течения;
•	 желтая сплошная линия с кружками на концах – возникновение обла-

сти пластического течения;
•	 зеленая пунктирная линия с кружками на концах – возникновение зоны 

разгрузки;
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•	 синяя штрихпунктирная линия с кружками на концах – возникновение 
области повторного пластического течения;

•	 красная сплошная линия с крестиками на концах – вырождение области 
пластического течения.

Стоит заметить, что последовательность развития зон с различными рео-
логическими свойствами отдельно во внутренней и внешней части шара од-
нозначна: сперва возникает область пластического течения, затем – зона 
разгрузки, после – область повторного пластического течения. Существен-
ную сложность в анализ напряженно-деформированного состояния тела вно-
сит отсутствие явной согласованности процессов во внешней и внутренней 
частях.
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Рис. 1. Дерево эволюции зон с различающимися реологическими свойствами, E – упругая 
область, P – области пластического течения, U – зоны разгрузки, R – области повторного 
пластического течения.
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Приведем для каждой области выражения для радиальной компоненты 
напряжений, пластических деформаций, перемещений и их констант инте-
грирования в общем виде, когда в теле присутствуют все 7 зон (см. рис. 2):

•	 упругая область:
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Рис. 2. Расположение областей с различающейся реологией и упругопластических границ 
при существовании всех семи зон.
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•	 внешняя область повторного пластического течения:
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•	 внутренняя область повторного пластического течения:
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Здесь er
p – остаточные деформации, a – граница между упругой областью и 

областью пластического течения; b – граница между областью пластического 
течения и зоной разгрузки, c – граница между зоной разгрузки и областью 
повторного пластического течения. Верхней ( , ,a b c



 

) и нижней ( , ,a b c
  

) ду-
гам обозначена принадлежность границ к внешней и внутренней частям шара 
соответственно. Кроме того,  =  1 2R c b a a b c R



 

  

g  – обобщенный 
вектор упругопластических границ, содержащей также радиусы внутренней и 
внешней поверхностей (индексация ведется с нуля).

В выражениях – дополнительно были использованы следующие замены:
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Возникновение зон разгрузки связано с выравниванием температурно-
го градиента на поверхности шара и является следствием ассоциированно-
го закона пластического течения , согласно которому скорость пластических 
деформаций не может быть отрицательна. Причем в областях b r a≤ ≤

 

 и 
a r b≤ ≤



  продолжает происходить рост пластических деформаций, а в обла-
стях r b≤



 и b r≤


 уровень накопленных деформаций фиксируется и остает-
ся ˆ ( ).p

re r  Таким образом, задача вычисления уровня накопленных деформа-
ций соответствует поиску огибающей семейства пластических деформаций 
с параметром t.

Положение упругопластических границ определяется согласно следующим 
условиям:

•	 равенство нулю пластических деформаций на границах ,a
  ;a


•	 равенство нулю скорости пластических деформаций на границах ,b


, ;b


•	 равенство пластических деформаций на границах ,c
  c


 и остаточных де-
формаций на этих границах.

Через ,p pt t




 обозначим моменты возникновения областей пластического 
течения, через ,u ut t





 – моменты возникновения зон разгрузки, через ,r rt t




 – 
моменты возникновения областей пластического течения, ,k kt t





 – моменты 
вырождения областей пластического течения. Верхние и нижние дуги, как и 
для упругопластических границ, обозначают принадлежность внешней и вну-
тренней части шара соответственно.

В моменты времени tk границы зон разгрузки “догоняют” границы об-
ластей пластического течения и достигают своего предельного положения 
( ) ( )k ka t b t b′= =
    

 и ( ) ( ) .k ka t b t b′= =
 

 

  Вырождение областей пластического 
течения может произойти как до, так и после возникновения областей по-
вторного пластического течения в зависимости от свойств материала и пара-
метров нагрева.

Алгоритм, позволяющий определить последовательность процессов при 
эволюции областей обратимого и необратимого деформирования, можно за-
писать в следующем виде:

1. Пусть тело в текущий момент времени тело находится в состоянии Pi 
(например, E) согласно рис. 1.

2. На следующем этапе тело может перейти из состояния Pi в любое из его 
дочерних состояний Sij (для P0 = E возможен переход в состояния S01 = PE и 
S02 = PE). Поэтому для каждого из состояний Sij определяется момент времени 
tij (например, t01 = 12 c и t02 = 12 c), в который данное состояние наступит (т.е. 
выполнится соответствующее ему условие на поверхности).

3. Из всех возможных Sij реализуется то Si′, для которого ti′ является наи-
меньшим из tij (т.е. из S01 = PE и S02 = EP реализуется Si′ = EP, поскольку t02 < t01).
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4. Реализованное состояние Si′ становится Pi+1, и процесс повторяется, на-
чиная с шага 1.

После полного нагрева до температуры Tm в момент времени .. (общий для 
всего тела) температурный градиент в теле становится равным нулю, процесс 
деформирования завершается, а упругопластические границы c



 и c
  достига-

ют своих предельных положений с ′
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 и c′  соответственно. При этом в областях 
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Для простоты дальнейших записей введем обобщенную функцию остаточ-
ных деформаций:
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Рассмотрим далее процесс полного остывания тела до начальной темпера-
туры, характеризующийся условием снятия температурной нагрузки D(r, t) = 0 
и представляющий собой процесс разгрузки материала во всем теле. Выраже-
ния для остаточных напряжений и перемещений, строго говоря, известны и 
совпадают с (3.21) или (3.22) с точностью до нижней границы интегрирова-
ния и констант, определяемых из условия свободных внутренней и внешней 
поверхностей шара:
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	 (3.25)

4. Анализ решения. В первую очередь следует заметить, что решение задачи 
теплопроводности было получено в предположении, что выполнены все усло-
вия применимости формулы Грина [11]. Данный факт связан с непрерывно-
стью решения со своими частными производными первого порядка по про-
странственной координате в замкнутой области r  ∈ [R1, R2], t  ≥ 0 и непрерыв-
ностью частных производных второго порядка в интервале r  ∈ [R1, R2]. Этот 
вопрос не рассматривается в рамках данной работы. На рис. 3 представлено 
распределение безразмерной температуры в безразмерных координатах в раз-
личные моменты времени.

Предельные переходы к реологическим моделям, не учитывающим вяз-
кость и упрочнение, осуществляются приравниванием нулю коэффициентов c 
и h соответственно. Одновременное исключение из рассмотрения вязкости и 
упрочнения приводит к случаю упругопластического материала, исследование 
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которого проводилось в работе [9]. Заметим также, что рассмотрение приве-
денных выше соотношений в пределе при 1 0a b c R= = = →

  

 приводит к реше-
нию аналогичной задачи о сплошном шаре [10].

Проведем сравнение четырех моделей сред. В дальнейшем для основ-
ных величин будем использовать следующие индексы: i – упругопластиче-
ский материал, c – упругопластический материал с упрочнением, h – упру-
говязкопластический материал без упрочнения, ch – упруговязкопластиче-
ский материал с упрочнением. В качестве демонстрации рассмотрим тело со 
следующими свойствами: R1 = 0.025 м, R2 = 0.225 м, x = 0.1 c–1, J = 1.172 · 10–4 
м2 · с–1, Dm = 8.5 · 10–3, k0 = 2 · 108 Па, g = 70.6, l = 9.2 · 1010 Па, m = 4.3 · 1010 Па, 
c = 0.9 · 1011 Па, h = 1.0 · 1010 Па · с.

В табл. 1 приведены моменты возникновения и вырождения областей при 
различных наборах реологических свойств, а также процентное изменение 
временных характеристик при включении в модель дополнительных механиз-
мов деформирования. Как видно из представленных данных, влияние вязких 
свойств на процесс деформирования незначительно проявляется только на 
ранних стадиях и практически исчезает с течением времени. В то же время 
введение упрочнения приводит к значительным количественным изменениям 
характеристик на протяжении всего процесса и, как следствие, может изме-
нить последовательности событий при его протекании.

Распределение остаточных напряжений в теле приведено на рис. 4. Как 
было отмечено ранее, влияние вязкости в момент полного нагрева шара и 
его последующего охлаждения является незначительным. Однако упрочнение 
приводит к существенному изменению величин напряжений (в рассматри-
ваемом случае – более чем в 2 раза). Стоит также заметить, что характер их 
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Рис. 3. Распределение безразмерной температуры в теле.
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распределения во внешней части шара совпадает с распределением остаточ-
ных деформаций в сплошном шаре.

На рис. 5 представлено изменение положения упругопластических границ 
с течением времени: (a) – для внутренней части шара, (б) – для внешней ча-
сти шара. Эти результаты подтверждают ранее сделанные наблюдения. Учет 
вязких деформаций практически не влияет на положение упругопластиче-
ских границ. В свою очередь, рассмотрение упрочнения материала приводит 
к увеличению глубины проникания областей пластического и повторного 

Таблица 1. Временные характеристики процесса для различных реологических 
моделей и относительные величины влияния включения в модель 
дополнительных свойств

Момент t, с dt, %
i c h ch c – i ch – h h – i ch – c ch – i

pt
 3.244 3.244 3.418 3.312 0.000 –3.106 5.362 2.090 2.090

pt


17.188 13.816 17.276 13.873 –19.62 –19.70 0.513 0.410 –19.29

ut
 18.516 18.512 18.690 18.579 –0.024 –0.591 0.939 0.366 0.342

ut


37.932 37.993 38.191 38.073 0.161 –0.308 0.681 0.209 0.370

kt


40.239 41.754 40.396 41.820 3.764 3.525 0.391 0.159 3.929

kt
 43.466 43.427 43.639 43.494 –0.092 –0.332 0.397 0.156 0.064

rt
 57.666 57.664 57.842 57.732 –0.004 –0.190 0.305 0.118 0.114

rt


121.81 115.89 121.96 115.95 –4.858 –4.925 0.127 0.057 –4.804
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Рис. 4. Распределение остаточных напряжений в теле.
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пластического течения в наиболее удаленной от поверхности нагрева части 
шара. Этот факт полностью согласуется с данным, представленными в табл. 1. 
Для всех четырех моделей сред возникновение пластических зон на внешней 
поверхности происходит практически в один и тот же момент. В то же время 
для моделей, учитывающих упрочнение, условия пластичности на внутренней 
поверхности выполняются раньше, чем для моделей без упрочнения.
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Рис. 5. Положение упругопластических границ
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Заключение. В рамках исследования было получено полное решение за-
дачи механики деформируемого твердого тела для нагреваемого полого шара 
с реологическими параметрами, которые придают модели свойства некон-
сервативности. Были совершены предельные переходы к частным моделям 
сплошных сред, описывающим упругопластический, упруговязкопластиче-
ский и упрочняющийся упругопластический материалы. В результате были 
получены численные характеристики описанного процесса, а также построе-
ны графические зависимости для ключевых величин при различных механиз-
мах деформирования.

Анализ решения позволил сформулировать следующие выводы:
1. Влияние вязкости на напряженно-деформированное состояние прояв-

ляется только на начальных этапах процесса и быстро ослабевает с течением 
времени.

2. Включение в модель параметра упрочнения значительно влияет на вре-
менные характеристики процесса и уровень напряжений в теле.

3. Добавление механизма упрочнения в упругопластическую модель не 
влияет на время возникновения первой пластической области, если вязкость 
материала не рассматривается.

4. Предельные положения упругопластических границ в наиболее удален-
ной от поверхности нагрева части шара для всех четырех моделей можно счи-
тать совпадающими.
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THE EVOLUTION OF REGIONS OF REVERSIBLE AND 
IRREVERSIBLE DEFORMATION WITHIN A HOLLOW SPHERE 
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Abstract – The Ivlev–Sporykhin continuum model, which is a model of a hard-
ening elastoviscoplastic solid, is considered in this study. The model takes into 
account both reversible and irreversible deformations to investigate evolutionary 
processes occurring in a hollow sphere under the influence of a time-dependent 
temperature field. During the solution of this problem, an analytical expression 
for the temperature distribution within the body was derived. A generalized tree of 
evolution of regions of elasticity, plastic flow, unloading, and re-plasticity was also 
constructed. Expressions for the radial components of stress and displacement in 
these regions were also developed. Four rheological models were compared, taking 
into account the various properties of the medium.

Keywords: Thermal stress, reversible and irreversible strain, elasticity, plasticity, 
viscosity, hardening, hollow sphere
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