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В статье рассматривается нелинейная динамика цилиндрического ре-
зонатора волнового твердотельного гироскопа с электромагнитными 
датчиками управления. Выведена математическая модель, которая во 
взаимосвязанной форме описывает нелинейные колебания резонатора 
и электрические процессы контура управления колебаниями. Получен-
ная математическая модель представляет нелинейную систему диффе-
ренциальных уравнений, которая содержит сингулярно возмущенные 
уравнения, причем сингулярно возмущенными являются уравнения 
электрических процессов. Учитывалась нелинейность, вызванная ко-
нечным отношением малого прогиба к малому зазору датчика управ-
ления. Предложены способы построения приближенных решений. 
Показано принципиальное отличие нелинейных слагаемых уравнений 
динамики резонатора при использовании восьми и шестнадцати датчи-
ков управления. Показано, что при использовании электромагнитных 
датчиков управления необходимо учитывать малый параметр, сингуляр-
но входящий в дифференциальные уравнения электрических процессов. 
По оценке угловой скорости дрейфа сделан вывод о неприменимости 
схемы гироскопа с восьмью электромагнитными датчиками управления 
из-за полученного значения некомпенсируемой угловой скорости дрей-
фа. В случае гироскопа с шестнадцатью датчиками управления выведена 
формула угловой скорости дрейфа, которую можно скомпенсировать, 
а также предложен способ вычисления смещения резонансного пика ам-
плитудно-частотной характеристики.
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1. Введение. В настоящее время актуальной задачей является повышение 
точности навигационных приборов, включая волновые твердотельные гиро-
скопы (ВТГ), с помощью построения более точных математических моделей 
динамики их чувствительных элементов [1–4]. Учет нелинейности колебаний 
в математических моделях динамики резонаторов ВТГ позволяет не только 
оценить погрешности и повысить точность прибора методами компенсации, 
но и исследовать ряд нелинейных эффектов, которые имеют место в динами-
ке резонаторов ВТГ и не могут быть исследованы в рамках линейных матема-
тических моделей.

Основы теории ВТГ заложены в работах Д.М. Климова и В.Ф. Журавлёва 
[5–12]. В монографии “Кварцевый полусферический резонатор (Волновой 
твердотельный гироскоп)” [5] и предшествующих работах [6–9] построена 
теория идеального гироскопа, обоснован эффект инерции упругих волн коле-
баний осесимметричного тела, кольцевого и полусферического резонаторов, 
построены основополагающие математические модели ВТГ, создана теория 
принципиального функционирования ВТГ и предложен ряд алгоритмов обра-
ботки измерений и управления колебаниями резонаторов. В работах [10–12] 
исследована динамика несовершенного резонатора ВТГ, предложен метод 
идентификации дефектов резонатора. В работе [13] исследована динамика 
кольцевого резонатора при произвольно изменяющейся угловой скорости. 
В работах [5, 9] показано, что погрешность, вызванная нелинейными свой-
ствами колебательной системы, присуща всем волновым твердотельным ги-
роскопам, а исследование динамики может проводиться в рамках уравнений, 
аналогичных уравнениям классического маятника Фуко. При этом указано, 
что для исследования нелинейности требуется учет специфики конкретной 
колебательной системы.

Работы [14–19] посвящены построению и исследованию математических 
моделей ВТГ, учитывающих нелинейность колебаний, вызванную электро-
статическими датчиками управления. Показано, что нелинейность является 
следствием конечного отношения малого прогиба резонатора к малому зазо-
ру между резонатором и электродом датчика управления. Обнаружены и ис-
следованы новые эффекты в динамике резонатора ВТГ, вызванные нелиней-
ностью электростатических сил датчиков управления: зависимость угловой 
скорости дрейфа от квадрата опорного напряжения; влияние нелинейности 
на амплитуду колебаний. В работе [17] исследовались нелинейные эффек-
ты динамики резонатора ВТГ с учетом сопротивления электрической цепи 
управления колебаниями. В работе [18] исследовано параметрическое возбу-
ждение колебаний, сопутствующее вынужденным колебаниям. В работе [19] 
предложены методики идентификации дефектов резонатора, учитывающие 
нелинейность колебаний резонатора.

В данной статье рассматриваются нелинейные колебания цилиндрическо-
го резонатора ВТГ, вызванные электромагнитными датчиками управления, 
выводится ряд нелинейных математических моделей. Рассматривается ВТГ с 
электромагнитными датчиками управления, поскольку они имеют преимуще-
ства перед ВТГ с электростатическими датчиками по простоте изготовления, 
надежности, устойчивости к внешним воздействиям. Также они позволяют 
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сократить время готовности гироскопа к работе и создавать необходимое 
воздействие на резонатор при больших угловых скоростях, поскольку силы 
притяжения электромагнитов больше, чем у электростатических датчиков. 
Таким образом, возможность применения ВТГ с электромагнитными датчи-
ками управления на высокоманевренных объектах в экстремальных условиях 
эксплуатации делает их перспективными навигационными приборами, од-
нако исследованию динамики ВТГ с электромагнитными датчиками управ-
ления посвящено очень мало исследований [20–22]. Выбор металлического 
цилиндрического резонатора обусловлен выбором электромагнитных датчи-
ков управления, причем данный тип резонаторов широко используется в ВТГ 
разных типов [23, 24].

В данной работе поставлены следующие две комплексные задачи. Первая 
задача: вывести нелинейную математическую модель динамики цилиндриче-
ского резонатора ВТГ с электромагнитными датчиками управления, которая 
во взаимосвязанной форме описывает нелинейные колебания резонатора ВТГ 
и электрические процессы контура управления колебаниями, и построить как 
можно более точное приближенное решение, которое можно использовать 
для исследования других, менее точных математических моделей. Для по-
строения приближенного решения выведенной нелинейной математической 
модели, представляющей из себя задачу Коши для системы дифференциаль-
ных уравнений тихоновского типа, будет использоваться метод голоморфной 
регуляризации тихоновских систем. Метод голоморфной регуляризации яв-
ляется развитием метода регуляризации С.А. Ломова на нелинейные систе-
мы дифференциальных уравнений [25–27] и был применен в работе [28] для 
системы дифференциальных уравнений, описывающей динамику резонатора 
ВТГ. Вторая задача: из выведенной наиболее общей исходной математиче-
ской модели получить приближенные математические модели и исследовать 
с их помощью нелинейные эффекты динамики резонатора ВТГ: угловую ско-
рость дрейфа и смещение резонансного пика амплитудно-частотной харак-
теристики. При исследовании нелинейных эффектов будут использоваться 
схемы ВТГ с восьмью и шестнадцатью датчиками управления, будет показано 
отличие нелинейных эффектов колебаний резонатора при разном количестве 
датчиков управления. Таким образом, в настоящей работе будут использо-
ваться, уточняться и обобщаться методы и подходы предшествующих работ по 
исследованию динамики резонатора ВТГ с шестнадцатью электростатически-
ми датчиками управления [16, 17, 28], а также будет получен комплексный ре-
зультат исследования нелинейной динамики резонатора ВТГ с восьмью элек-
тромагнитными датчиками управления.

2. Исходная математическая модель с учетом нелинейности колебаний, вы-
званной электромагнитными датчиками управления. Рассмотрим резонатор вол-
нового твердотельного гироскопа (рис. 1), представленный упругой осесим-
метричной цилиндрической оболочкой 1 толщины h, высоты H и кругового 
сечения радиуса R. Один край резонатора свободен, а другой жестко прикреп-
лен к основанию 2 (рис. 1a).

Предполагается, что упругие свойства материала резонатора изотропны, 
инструментальные погрешности изготовления не учитываются. Колебания 
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резонатора 1 на основании 2 возбуждаются системой из n электромагнитов. 
Магнитный поток, создаваемый электромагнитом, проходит по магнитопро-
воду 3, основанию, резонатору и замыкается через зазор 4 (рис. 1б). Резона-
тор изготавливается из прецизионного железоникелевого сплава элинвара 
[21], обладающего необходимыми упругими свойствами, имеющего низкий 
температурный коэффициент линейного расширения и высокую магнитную 
проницаемость.

Для вывода уравнений движения цилиндрического резонатора составим 
функцию Лагранжа электромеханической системы [8], включающей, поми-
мо кинетической и потенциальной энергии резонатора, энергию магнитного 
поля, создаваемого электромагнитными датчиками управления.

С основанием прибора свяжем ортогональную систему координат Ox1x2x3. 
Ось x3 направим по оси симметрии резонатора (рис. 1). В качестве криволи-
нейных координат примем нормализованную (отнесенную к радиусу резона-
тора) длину образующей a, 0 ≤ a ≤ a1 = H/R, и угол в окружном направлении 
θ, который отсчитывается от координатной оси Ox1 0 ≤ q ≤ 2p. Введем правый 
ортогональный трехгранник y1y2y3, жестко связанный с срединной поверхно-
стью резонатора. Пусть u = (u, v, w)T – вектор упругого смещения произволь-
ной точки срединной поверхности резонатора в осях y1y2y3.

Для составления функции Лагранжа запишем сначала кинетическую энер-
гию резонатора. По теореме о сложении скоростей определяем вектор абсо-
лютной скорости произвольной точки срединной поверхности резонатора:
	 ( ),+ ×V = u r + uW 	 (2.1)
где вектор угловой скорости резонатора W = (–W, 0, 0)T и радиус вектор 
r = (0, 0, R)T заданы в проекциях на оси y1y2y3. В  и далее точкой обозначаем 
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Рис. 1. Расчетная схема волнового твердотельного гироскопа.
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дифференцирование по времени t. Учитывая (2.1), выражение кинетической 
энергии цилиндрической оболочки принимает вид:

	 ( )( ) ( ( )) ( )   ,
12

2 2 2 2

0 0

1
2

T hR u v R w w v d d

ap

= ρ + + W + + − W a q∫ ∫    	 (2.2)

где ρ – плотность материала резонатора. Формула (2.2) задает в общем виде 
кинетическую энергию резонатора ВТГ на вращающемся основании.

Потенциальную энергию деформации цилиндрической оболочки опреде-
лим по формуле [29], которая является результатом использования гипотезы 
Кирхгофа–Лява:
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2 1 0 25

2

p

p

D R v d d

D R v d d

P
a p

a p

k + k − − k k − k q a +

+ e + e − − e e − e q a

= ∫ ∫

∫ ∫
	

(2.3)

где D1 = Eh3/[12(1 – vp
2)] – жесткость цилиндрической оболочки при изгибе 

(цилиндрическая жесткость); D2 = Eh/(1 – vp
2) – жесткость цилиндрической 

оболочки при растяжении (сжатии); Е – модуль Юнга; νp – коэффициент 
Пуассона. Для цилиндрической оболочки компоненты тангенциальной и 
изгибной деформаций задаются формулами [30]:

   ,          ,             , 

,   ,   . 

11 22 12

2 2 2

11 22 122 2 2 2 2

1 1 1

1 1 1
2

u u
w

R R R

w w u w
w

R R R

∂ ∂ ∂ ∂   e = e = + e = +   ∂a ∂q ∂q ∂a   
   ∂ ∂ ∂ ∂ ∂

k = − k = − + k = − − +      ∂q ∂a ∂a∂q∂a ∂q   

v v

v
	 (2.4)

Для определения вектора перемещения воспользуемся условиями нерастя-
жимости срединной поверхности, которые получаются приравниванием нулю 
всех трех компонент тангенциальной деформации e11 = e22 = e12 = 0:

	     ,   ,    .0 0 0
u u

w
∂ ∂ ∂ ∂

= + = + =
∂a ∂q ∂q ∂a

v v 	 (2.5)

Для рассматриваемого цилиндрического резонатора, у которого один край 
свободен, а другой закреплен, система уравнений (2.5) не допускает решений 
кроме тривиального, а приближение к решению может быть получено при 
выполнении двух условий: e12 = 0 и e22 = 0 [31]. Из данных условий следует су-
ществование разрешающей функции  ( , , ):tY a q

	     ,   ,    
2

2
u w

∂Y ∂Y ∂ Y
= − = = −

∂a ∂q ∂q
v .	 (2.6)

Учитывая формулы (2.4), (2.5), (2.6), запишем выражения для компонент 
изгибной деформации через разрешающую функцию:
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k = − − = +   ∂q∂q ∂q ∂q   

	    
2 4 2

12 2 2 3

2 2w v

R R

   ∂ ∂ ∂ Y ∂ Y
k = − − = − +      ∂a∂q ∂a ∂a∂q∂a∂q   

.	 (2.7)

Подставляя (2.6), (2.7) в (2.2), (2.3), выражаем кинетическую и потенци-
альную энергию деформации цилиндрического резонатора на неподвижном 
основании через разрешающую функцию Y(a, q, t): 
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	       .
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С учетом того, что в волновых твердотельных гироскопах с цилиндриче-

ским резонатором для возбуждения колебаний используется вторая форма 
колебаний резонатора по окружной координате, в работе [16] определен спе-
циальный вид разрешающей функции:

	 ( )* *( , , ) ( ) ( ) cos ( )sin2 2 2t C t g tfY a q = y a q − q ,	 (2.8)

где введены обобщенные координаты f*(t), g*(t), а функция y2(a) определяется 
при решении трансцендентного уравнения [16].

Используя формулы (2.6) и функцию (2.8), запишем вектор смещения 
произвольной точки срединной поверхности резонатора в одномодовом при-
ближении по второй форме колебаний (k = 2):

	
( )
( )
( )

* *

* *

* *

( ) ( ) cos ( )sin( , , )
( , , ) ( , , ) ( ) ( )sin ( ) cos

( , , ) ( ) ( ) cos ( )sin

2

2

2

2 2

2 2 2

4 2 2

C f t g tu t

t t C f t g t

w t C f t g t

′y a q − q a q 
  a q = a q = y a q + q  
  a q y a − q + q   

u v .	 (2.9)

Примем в качестве обобщенных координат второй формы колебаний резо-
натора функции f*(t), g*(t) и положим константу C = 1/(4y2(a1)), чтобы прогиб 
свободной кромки резонатора имел вид * *( , , ) ( ) cos ( )sin .1 2 2w t f t g ta q − q + q=

Подставляя (2.9) в (2.2), определяем кинетическую энергию резонатора:

	 * * * * * * *( ) ( )2 21
2

2
T m f g g f f g = + + z W − 

 

  ,	 (2.10)

где приведенная масса
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	 ( )( ( )) ( )  
( )

12
2 2

2 22
2 1 0

20 d
16

hR
m

a
pρ ′= y a + y a a
y a ∫ ,	 (2.11)

коэффициент * ( ) 
( )

12
2
22

2 1 0

d
hR

a
pρ

z = y a a
y a ∫ . В связи с малостью Ω в (2.10) пренебре-

гались слагаемые, содержащие W2.
Подставляя (2.9) в (2.4), а (2.4), (2.5) в (2.3), получим выражение для потен-

циальной энергии деформации цилиндрического резонатора:

	 ( )* *       2 21
2

c f gP = + ,	 (2.12)

где приведенная жесткость резонатора

	

( )

( )

 ( ) ( )  
( )

( ) ( ( )) ( ) ( ) .

1
21

2 22 2
2 1 0

2
2 2 2

2 3
2

3 1 3 4p

D
c

R

v d

a
p  ′′= y a − y a −y a

′ ′′− − y a + y a y a a

∫
	 (2.13)

При вычислении магнитной энергии n электромагнитов предположим, 
что зазоры малы по сравнению с линейными размерами сердечников. Тогда 
магнитное поле можно считать однородным и пренебречь краевыми эффек-
тами. Поля рассеяния вне магнитопровода, резонатора и зазоров не учиты-
ваем. Считая, что магнитная проницаемость магнитопровода, резонатора и 
основания велика, будем пренебрегать их магнитным сопротивлением. При 
сделанных допущениях энергия магнитного поля n электромагнитов опреде-
ляется выражением:

	
( )* *( ) cos ( )sin

2
2 0

1 1

1
12 2

1 2 2

j
m j j

j j

n n

j j

iL
L i

f t g t
d

W
= = − − q + q

= =∑ ∑ ,	 (2.14)

где Lj – индуктивность, ij – ток j-го электромагнита, центр которого располо-
жен под углом qj = 2p( j – 1)/n к оси Ox, j = 1, ..., n; L0 = m0SN2/d – индуктивность 
электромагнита при недеформированном резонаторе, m0 = 4p · 10–7 Гн/м – маг-
нитная проницаемость вакуума, S – площадь полюса, N – число витков об-
мотки, d – зазор между сердечником электромагнита и недеформированным 
резонатором.

Потенциальная энергия упругой деформации цилиндрического резонатора 
и его кинетическая энергия определяются по формулам (2.12) и (2.10) соот-
ветственно. Используя соотношения (2.12), (2.10), (1.14), найдем выражение 
для функции Лагранжа–Максвелла электромеханической системы:

	 ( ) ( ) ( )( )* * * * * * * * *
2 2 2 21

2
2mT P W m f g g f f g f gc− + + + z W − + += − 

 
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( )* *

.
( ) cos ( )sin

2
0

1
12

1 2 2

j

j j

n

j

iL

f t g t
d

= − − q + q
+ ∑ 	 (2.15)

Внутренние потери при колебаниях будем описывать моделью Кельвина−
Фойгта. Внешними потерями пренебрегаем, считая объем корпуса прибора 
вакуумированным. Введем диссипативную функцию, учитывающую внутрен-
нее трение материала резонатора:

	 ( )* * *
,2 21

2
c f gΦ = +


	 (2.16)

где c* – коэффициент, характеризующий вязкоупругие свойства материала 
резонатора.

Введем электрическую диссипативную функцию:

	 ,2

1

1
2

n

e j

j

e R i
=

Φ = ∑ 	 (2.17)

где Re – электрическое сопротивление цепи между электродом управления и 
источником питания.

Используя уравнения Лагранжа–Максвелла, учитывая (2.15), (2.16), (2.17), 
получим следующие уравнения электромеханической системы:
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−
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−
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+ q q
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	 (2.18)

	 , ,0 1j e j jR i U U j nΦ + = =

 	 (2.19)
где g = c*/m, w2 = c/m, z = z*/m; Фj = Lj ij – магнитный поток, Re – электрическое 
сопротивление; Uj – нормализованное величиной U0 управляющее напряже-
ние, которое подается на j-й электромагнит.

Запишем выражение магнитного потока в виде:
	 ( ) ( ) ( ) ( ), ... ,0 0 1j j j jt L t i t L i I t j nΦ = = = 	 (2.20)
где i0 = U0 /Re и введено обозначение безразмерной величины:

	 ( )cos sin0 1 2 2
j

j ji f g
i

I j −− q q
= ,	 (2.21)

где f(t) = –f*(t)/d, g(t) = –g*(t)/d – безразмерные обобщенные координаты, за-
дающие нормализованные по отношению к величине зазора d радиальные 
смещения резонатора в двух фиксированных точках, отстоящих друг от друга 
под углом 45o.



	 НЕЛИНЕЙНАЯ ДИНАМИКА ЦИЛИНДРИЧЕСКОГО РЕЗОНАТОРА...� 81

Подставляя (2.20), (2.21) в (2.19), делим левую и правую часть (2.19) на 
U0 = i0Re. И переходим к f(t), g(t). Тогда из (2.18), (2.19) получаем систему диф-
ференциальных уравнений:

	

,

,
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sin

2

2

2

1

2

1

8
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02

2 0

n

j j
j
n

j j
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Ig g f
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=
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h+ + =

g w − q
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∑

∑

 





 

	 (2.22)

	 ( cos sin ) , ,0
1 2 2 1j j j j j

e

L
I I f g U j n

R
+ − q − q = =

 	 (2.23)

где обозначены v = 2zW, h = 4L0i0
2/(md2).

Поставим начальные условия для системы –:

	 ( ) , ( ) , ( ) , ( ) , ( ) , ... .0 0 0 0 00 0 0 0 0 1j jf f f f g g g g I I j n= = = = = = 

  	 (2.24)
Перейдем в уравнениях (2.22)–(2.23) к безразмерному времени t = wt и 

запишем в следующем виде:
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	 ( cos sin ) , ,
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I
f g I U j ne + − q − q = =

t


где g~ = g/w, v~ = v/w, h~ = h/w2, и введен e = L0w/Re – безразмерный малый пара-
метр. Уравнения в безразмерном времени вместе с начальными условиями 
(2.24)  запишем в векторно-матричном виде:
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hAx f y
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 	 (2.25)

	 ( ) ( )d
d

+e = t
t
y

D x y h ,	 (2.26)

	 ( ) , ( )0 00 0= =yx yx ,	 (2.27)
где обозначены
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	 { }cos sin , , cos sin( ) ,1 1 3 1 1 31 2 2diag 1 2 2n nx x x x− + q + q − + q += qD x 

	 ( ),( ,) .1
T

nU U=th 

Таким образом, получена задача Коши для системы дифференциальных 
уравнений тихоновского типа (2.25)–(2.27), то есть системы дифференци-
альных уравнений, часть из которых являются сингулярно возмущенными. 
Выведенную математическую модель (2.22)–(2.24), которая также записана 
в форме (2.25)–(2.27), будем называть исходной математической моделью, так 
как она объединяет обобщенный вид нелинейности колебаний резонатора, 
вызванной электромагнитными датчиками управления, и сингулярно возму-
щенные уравнения электромагнитных колебаний в цепи управления.

3. Вырожденная задача для тихоновской системы в качестве приближенной 
математической модели. Установим, что для задачи (2.25)–(2.27) выполняются 
условия теоремы Тихонова о предельном переходе [32]. Поскольку при работе 
ВТГ амплитуда прогиба меньше величины зазора между недеформированным 
резонатором и электромагнитами управления (исключается их соединение), 
при исследовании задачи (2.25)–(2.27) будем использовать ограничение:

	 2 2 2
1 3x x+ ≤ b ,	 (3.1)

где β – константа, 0 < b < 1. Используя (3.1), введем область

	 { }{ }( , ) , , / ( ), ...2 0 2 1 1jH D T y j n= t ∈ = ≤ b ≤ t ≤ ≤ − b =x x .

Правые части уравнений (2.25), (2.26)  непрерывны вместе с частными 
производными по компонентам векторов x и y в области H. Полагая в (2.26)  
ε = 0, получим задачу, называемую в теории возмущений вырожденной 
задачей:

	 ( )d
d

+=
t

hx
A fx y ,	 (3.2)

	 ( ) ( )+ t =D x y h 0 ,	 (3.3)

	 ( ) .00 =x x 	 (3.4)
Система алгебраических уравнений (3.3) представляет n независимых урав-

нений с единственными решениями:

	 ,cos sin1 3
1

1 2 2
j

j
j j

h
y j n

x x
= =

−− q q
 ,

которые вместе с производными по x1 и x3 непрерывны в области D. Условие 
устойчивости полученных корней справедливо в результате выполнения (3.1): 

	 ( )( cos sin ) cos sin , .1 3 1 31 2 2 1 2 2 0 1j j j j j j
j

x x y h x x j n
y
∂

− − q − q + = − + q + q < =
∂



Решением задачи (3.2)–(3.4) будем называть непрерывно дифферен-
цируемую вектор-функцию x(t), удовлетворяющую условиям (3.1), (3.4) и 
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обращающую уравнения (3.2) в тождество. В области D решение задачи (3.2)–
(3.4) существует и единственно.

Таким образом, согласно теореме Тихонова о предельном переходе [32], 
решение задачи (2.25)–(2.27) существует на [0, T] и имеет место предельный 
переход к решению вырожденной задачи (3.2)–(3.4) при стремлении малого 
параметра ε к нулю:

	
lim ( , ) ( ), ,

lim ( , ) ( ) ,
0

0

0

, 0

T

T
e→

e→

t e = t ≤ t ≤

t e = t < t ≤

x x

y y

Основываясь на теореме Тихонова о предельном переходе и учитывая 
малость параметра ε, можем использовать решение вырожденной задачи 
(3.2)–(3.4) в качестве нулевого приближения к компоненте решения x задачи 
(2.25)–(2.27). Обратим внимание, что приближение для компоненты решения 
y задачи (2.25)–(2.27) справедливо только вне окрестности начальной точки 
(вне пограничного слоя).

Обратим внимание, что вырожденную задачу (3.2)– (3.4), как задачу нахо-
ждения x(t), следует переписать в виде:

	 ,( ( )) ()1 0d
0

d
−+ −= =

t
hx

x D xA f x h x .

Решение вырожденной задачи в теории возмущений представляет доста-
точную сложность, поскольку данная задача обычно нелинейна. Рассмотрим 
подробнее, каким образом можно построить приближение к решению вы-
рожденной задачи. Опуская обозначение “–” решения вырожденной задачи, 
запишем ее в исходных обозначениях, чтобы нагляднее показать суть прово-
димых упрощений:
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	 (3.5)

	 ( ) , ( ) , ( ) , ( )0 0 0 00 0 0 0f f f f g g g g= = = = 

  .	 (3.6)
В (3.5)–(3.6) использовался общий вид записи для произвольного числа 

датчиков управления. Рассмотрим случай ВТГ с n = 8 датчиками управления. 
Тогда напряжения Uj  j = 1...8, подаваемые на электромагниты управления, 
имеют вид: 
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где обозначены m = w0/w = (w + l)/w, w0 – частота внешнего гармонического 
возбуждения колебаний резонатора близкая к резонансной частоте второй 
формы колебаний ω, l = w0 – w,   – частотная настройка, |l| << w; u1, u2, u3, u4 – 
нормализованные амплитуды управляющих напряжений, ui < 1, i = 1...4; uA(t), 
uB(t) – нормализованные управляющие напряжения, подаваемые, соответ-
ственно, на группу электродов № 1, 3, 5, 7 и смещенную относительно них на 
угол 45o группу электродов № 2, 4, 6, 8.

Как и для электростатических датчиков управления [16], так и для элек-
тромагнитных датчиков сигналы управления (3.7) реализуют широко приме-
няемую в ВТГ “пуш-пульную” (push-pull) схему управления [5]. Данная схема 
основана на подаче разности потенциалов U0(1 + u) и U0(1 – u), 0 < u < 1, на дат-
чики, расположенные ортогонально, и применяется для линеаризации силы 
датчика, которая пропорциональна квадрату напряжения. В данном случае 
для нормализованных напряжений:

	 ( ) (     ) .2 21 1 4u u u− =−+ 	 (3.8)
Однако при учете конечного отношения прогиба резонатора к зазору дат-

чика как электростатического [16], так и электромагнитного нарушается ли-
неаризация push-pull. Несмотря на конечность отношения прогиба к зазору, 
величина прогиба является малой, что обосновывает одновременное исполь-
зование при выводе уравнений динамики резонатора линейной теории оболо-
чек и учет нелинейности силового воздействия датчика управления. Силовое 
воздействие двух ортогонально расположенных датчиков управления пропор-
ционально выражению, которое может быть разложено в ряд по нормализо-
ванному величиной зазора прогибу / 1w w d= < :
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(3.9)

Таким образом, при учете прогиба w~, схема линеаризации push-pull нару- 
шается.

Амплитуды нормализованных величин имеют одинаковый порядок ма-
лости, поэтому слагаемыми, содержащими f  agbuk

d, k = A, B, пренебрегаем при 
выполнении условия a + b + d > 3 в связи с высоким порядком малости. Тогда 
с учетом (3.9) получаем из (3.5) следующие уравнения:
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	 (3.10)
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В дальнейшем будем пренебрегать слагаемыми uA
2(t)f, uB

2(t)g в силу их мало-
сти. Данные слагаемые характеризуют параметрическое возбуждение колеба-
ний резонатора, сопутствующее вынужденным колебаниям, которое было по-
казано в работе [16] при использовании электростатических датчиков управ-
ления и более подробно исследовалось в работе [18]. Также далее пусть будет 
учтено изменение квадрата характерной частоты собственных колебаний на 
величину η. В итоге запишем (3.10) в виде:
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	 (3.11)

Уравнения (3.11) учитывают все рассмотренные нелинейности до третьего 
порядка: кубическую нелинейность специального вида и квадратичную нели-
нейность при управлении. Вид кубической нелинейности в (3.11) обусловлен 
использованием восьми датчиков управления, n = 8. При схеме управления 
колебаний с использованием шестнадцати датчиков управления, n = 16, вид 
кубической нелинейности имел бы вид как в работе [16], где рассматривались 
шестнадцать электростатических датчиков управления.

Уравнения (3.11), представляющие уравнения вырожденной задачи, опи-
сывают динамику резонатора ВТГ, их можно усреднить по методу Крыло-
ва–Боголюбова и, действуя аналогично схеме исследования [16], вывести 
нелинейные эффекты динамики резонатора ВТГ: угловую скорость дрейфа, 
вызванную нелинейностью колебаний, и сдвиг резонансного пика амплитуд-
но-частотной характеристики. Однако в таких исследованиях будут отсут-
ствовать эффекты, вызванные влиянием электрического сопротивления цепи 
управления (так как в вырожденной задачи полагали ε = 0). Поэтому нам тре-
буется более точная приближенная математическая модель, учитывающая 
электрическое сопротивление цепи управления.

Далее покажем, как можно получить приближенное решение вырожден-
ной задачи. Запишем задачу с уравнениями (3.11) в виде:

	 , (( , ) ) 0d
0

d
+= t =

t
hX

X X XA b x ,	 (3.12)
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t = + + − mt+ mt +

+ + − mt+ mt

b X

где h  – малый параметр. То есть имеется регулярно возмущенная задача, 
поэтому используем метод малого параметра и решение ищем в виде:

	 [ ] [ ] [ ]( ) ( ) ( ) ( )0 1 2 2t t t t+ += +h hX X X X 

 

Заметим, что по правилу Коши произведения рядов можно получить сте-
пенной ряд, коэффициенты которого обозначим:
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Тогда получим серию задач с системами линейных дифференциальных 
уравнений:
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и их решения по формуле Коши:

	 [ ] [ ]( ) ( ) ( ) ( ) ( ) ( )1

0

0 00 10 ds s s
t

− −t t += t ∫ bX xΦ Φ Φ Φ ,

	 [ ] [ ]( ) ( ) ( ) ( ) , , , ,1

0

1d 2j js s js−
t

t t= =∫ bX Φ Φ

где ( )tΦ  – фундаментальная матрица решений системы уравнений.
4. Построение приближенного решения для исходной математической модели. 

Будем использовать метод голоморфной регуляризации [25], преимуществом 
которого является построение единых формул приближенного решения как в 
пограничном слое, так и вне его, что позволяет проводить качественный ана-
лиз приближенного решения на всем рассматриваемом временном отрезке, 
включая пограничный слой. Данный перспективный математический метод 
аналитической теории возмущений [25–28] был впервые применен для по-
строения приближенного решения нелинейной математической модели, опи-
сывающей динамику резонатора ВТГ с шестнадцатью электростатическими 
датчиками управления в [28]. Алгоритм метода голоморфной регуляризации 
можно описать следующим образом: сначала нелинейная сингулярно возму-
щенная задача сводится к линейной задаче относительно первых интегралов, 
которая изучается с точки зрения регулярной теории возмущений, а затем 
применяется аппарат теории неявных функций и определяются коэффици-
енты степенного по малому параметру ряда. При построении приближен-
ных решений используются некоторые упрощения, позволяющие показать 
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эффективность метода [28]. Воспользуемся формулами, которые были выве-
дены в работе [28] для тихоновской системы дифференциальных уравнений 
вида (2.25)–(2.27). Формулы приближения к решению (2.25)–(2.27), имеюще-
го второй порядок точности по ε:

	 [ ] [ ] , [ ,, , ], ( ) ,20
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X X xX X 	 (4.1)
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где C1, C2 – некоторые константы.
Сначала принимаем в качестве [ ] ( ) ( )0 t = tX X



 – решение вырожденной за-
дачи, или приближение к решению вырожденной задачи.

Для компоненты y решения – выводятся следующие коэффициенты при-
ближения (4.2) [28] с подстановкой компонент ( )= tx X


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а также
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	 (4.4)

Далее можно получить для компоненты x следующий коэффициент при-
ближения (4.1) [28], использующий [ ] [ ], :0 1Y Y

	 [ ] [[ ] ]( ) ( ), , ,0 11 1

0

ds ss s−
t

t t   ′=   
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где Y(t) – фундаментальная матрица решений системы уравнений
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– матрица Якоби размера m × n.
Пример. Пусть цилиндрический резонатор ВТГ с электромагнитными дат-

чиками изготавливается из магнитомягкого железоникелевого сплава элин-
вар с плотностью ρ = 8140 кг/м3, модулем упругости E = 190 ГПа и коэффи-
циентом Пуассона νp = 0.3. Принимаем размеры цилиндрического резонатора 
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R = 20 мм, h  = 1 мм, H = R. Используя формулы приведенной жесткости (2.13) 
и массы (2.11), рассчитываем ω = 8637 c–1. Добротность резонатора Q = 5 · 104, 
тогда получаем / .51 2 10Q −g = = ⋅  Пусть индуктивность равна L0 = m0SN 2/d ≈ 
≈ 1 · 10–5 Гн (площадь полюса S  = 1 мм2, расстояние между полюсом и поверх-
ностью резонатора d = 0.2 мм, количество витков катушки N = 40). Элек-
трическое сопротивление цепи управления Re = 3 Ом. Тогда малый параметр 
в (2.25)–(2.27), e = L0w/Re ≈ 0.029. Пусть используется опорное напряжение 
U0 = 1.5 В, тогда коэффициент h ≈ 2.5 · 105 c–2, и, соответственно, безразмер-
ный коэффициент h∼  = h/w2 = 3.35 · 10–3. Таким образом, показано, что задача 
(2.25)–(2.27) содержит два малых параметра: h∼  = 3.35 · 10–3 входит регулярным 
образом в (2.25), а e = 0.029 входит сингулярным образом в (2.26). Заметим, что 
значения малых параметров в задаче вида (2.25)–(2.27), описывающей дина-
мику ВТГ с электростатическими датчиками управления [16], имеют гораздо 
меньшие значения, что позволяло в работе [16] в качестве приближения высо-
кой точности использовать решение вырожденной задачи. При рассмотрении 
ВТГ с электромагнитными датчиками управления мы построим приближе-
ния более высокого порядка точности по обоим малым параметрам. Будем 
рассматривать управляющие нормализованные напряжения u1 = 0, u2 = 0.01, 
u3 = 0, u4 = 0, нормализованный начальный прогиб резонатора x1

0 = 0.05 (чтобы 
ускорить время готовности прибора) и остальные нулевые начальные значе-
ния x2

0 = 0, x3
0 = 0, x4

0 = 0, yj
0 = 0,  j = 1...8.

Построим приближения к компоненте решения y1 задачи (2.25)–(2.27):  
Y1

[0] и Y1
[0] + eY1

[1], которые получены по методу голоморфной регуляризации 
и определены формулами (4.3), (4.4). Сначала строим приближение к реше-
нию вырожденной задачи (3.12), затем используем его в формулах (4.3), (4.4). 
На рис. 2 построены графики разности высокоточного численного приближе-
ния y1

* и построенных приближений DY1
[0] = y1

* – Y1
[0], DY1

[1] = y1
* – (Y1

[0] + eY1
[1]) из 

которых видно значительное уменьшение погрешности при использовании 
уточнённого приближения Y1

[0] + eY1
[1].

5. Осредненная математическая модель динамики резонатора. Для исследо-
вания нелинейных эффектов динамики резонатора проводится осреднение 

10

0.005

∆Y1
(0), ∆Y1

(1)

–0.005

5 10 15 20 τ

Рис. 2. Графики разности DY1
(0) = y1

* – Y1
[0] – сплошная линия, DY1

(1) = y1
* – (Y1

[0] + eY1
[1]) – 

пунктирная линия.
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дифференциальных уравнений, описывающих колебания резонатора. По-
лученные уравнения в новых медленных переменных позволяют, например, 
определить по дифференциальным уравнениям угловую скорость дрейфа 
либо построить амплитудно-частотные характеристики [16]. Обычно в таком 
случае не интересует начальный промежуток времени. Поэтому для данных 
исследований мы возьмем приближения (4.3), (4.4) без подстановки ( )tX



 вда-
ли от начальных условий:
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и подставим их в уравнения (2.25), описывающие колебания резонатора:
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Далее учтем в уравнениях только слагаемые первого порядка по ε. Поло- 
жим:
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∑ ∑

∑ ∑

При рассмотрении вырожденной задачи, с учетом (3.9), было принято 
в  (3.10) приближение:

	 ( )
, , ,

( )
( )

(
os

)
c

2
3 2

1 1 1
7 11 3 5

2 8 2 1 3j
j

j
A

j

h
x x x u

xd=

t 
≈ + + + 

 
q∑ .

Используя (3.9), а также разложения в ряд:
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	 (5.1)

с учетом нелинейных слагаемых до третьей степени, получим:
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Аналогично получим, что
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Будем, как и ранее, пренебрегать слагаемыми, вызывающими незначи-
тельное параметрическое возбуждение колебаний, в данном случае – содер-
жащими произведения ,A Au u′  B Bu u′ . В итоге получаем уравнения в виде:
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	 (5.2)

Для исследования динамики резонатора проведем осреднение [33] полу-
ченной системы дифференциальных уравнений (5.2). Рассмотрим методику 
вывода осредненной нелинейной системы уравнений динамики резонатора 
ВТГ, основанную на специальном способе приведения системы уравнений 
(5.2)  к стандартной форме метода осреднения [17]. Ее отличительной осо-
бенностью являются переход в собственный базис матрицы системы нулевого 
приближения и после преобразований возвращение в исходный базис, а также 
введение частотной настройки в матрицу системы. Данная методика делает 
процедуру осреднения уравнений динамики более алгоритмически простой, 
не требующей трудоемкого разрешения системы уравнений относительно 
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новых переменных, что важно для целей исследования различных нелиней-
ных математических моделей динамики резонаторов ВТГ.

Запишем (5.2) в векторно-матричной форме:

	 ( ) ( )( ) ( ) ( , ) ( )0 1 2
d
d

= + t + − e t + t
t

h h
x

A A x N x N x F  ,	 (5.3)
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    

− −g − e−    

x A A ,

где для удобства введены обозначения * / ,g = g h  * /v v= h  ,
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N x N x F

Для приведения матрицы A0 к диагональному виду используем замену 
x = S0z, где S0 – матрица перехода, составленная из базисных векторов, пред-
ставляющих собственные вектора матрицы A0. Таким образом, при перехо-
де к собственному базису, матрица A0 принимает следующий вид: { , , , }1

0 0 0 0 diag i i i i− = = − −S A S Λ
{ , , , }1

0 0 0 0 diag i i i i− = = − −S A S Λ , i – мнимая единица, и из (5.3) получаем систему диф-
ференциальных уравнений:

	 ( ) ( )( ) ( ) ( , ) ( )1 1
0 0 0 0 1 2

d
d

− −h h= + t + − e t + t
t
z

S A S z S N z N z FL   .	 (5.4)

Содержащуюся в матрице L0 безразмерную собственную частоту представ-
ляем в виде: *1 = m − hl  [27]. Тогда *0 0 0= m − lhL L L  и, как следствие, (5.4) 
можно записать в следующем виде:

	 ( ) ( )*( ) ( ) ( , ) ( ) .1 1
0 0 0 0 0 1 2

d
d

− −− m = t − l + − e t + t
t

h h
z

z S A S z S N z N z F Λ Λ 	 (5.5)

Правая часть (5.5) в силу своей малости оказывает малое возмущающее воз-
действие на колебательный процесс. Решением (5.5) при нулевой правой ча-
сти будет ( ) ,0em tt =z rL

  где 0em tL  − матричная экспонента, ( , , , )1 1 2 2
Tq p q p=r      − 

обозначение вектора констант. Для приведения (5.3) к стандартной форме, 
согласно методу вариации произвольных постоянных Лагранжа [26], полагаем 
константы r  медленными переменными ( )tr :

	 ( ) ( )0em tt = tz rL
 .	 (5.6)

Так как нас интересуют переменные ( )tr  в исходном базисе, используем 
матрицу перехода и формулу преобразования вектора медленных переменных 
при переходе в рассматриваемый собственный базис:
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	 ( ) ( )1
0S −t = tr r ,	 (5.7)

где ( )( ) ( ), ( ), ( ), ( )1 1 2 2
T

q p q pt = t t t tr  заданы в исходном базисе.
Подставляя (5.7) в (5.6), а (5.6) в (5.5), получаем:
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 1 2
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d

= h t t
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 ,	 (5.8)
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	 ( ) ( )0 1
0 0e−m t −t = tF S S FΛ .

Таким образом, система (5.3) сведена к системе (5.8) в стандартной фор-
ме метода осреднения [33]. Следующим этапом метода осреднения является 
замена системы (5.8) осредненной, полученной интегрированием по общему 
периоду / :2Tt = p m
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	  ( )
/
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2
T
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0

1
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,   u u u u u u u ud
p m

m
= t t = − me me − me

p
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Таким образом, получена нелинейная математическая модель в медлен-
ных переменных (5.9), которая учитывает сопротивление электрической цепи 
управления колебаниями ВТГ и все рассмотренные нелинейности до третьего 
порядка. Далее будем использовать нелинейную систему (5.9) для исследова-
ния угловой скорости дрейфа ВТГ. 

6. Угловая скорость дрейфа гироскопа при нелинейных колебаниях. Рассмот-
рим динамику резонатора ВТГ с электромагнитными датчиками управления 
при наличии только постоянного опорного напряжения: U0 ≠ 0, u1 = u2 = u3 = 
= u4 = 0. Исследование угловой скорости дрейфа ВТГ будем проводить с помо-
щью переменных, называемых элементами орбиты [9]: r(t) и k(t) – амплитуды 
основной и квадратурной волн колебаний, q(t) – угол прецессии, c(t) – вре-
менная фаза,

	 cos( )cos sin( )sin ,
cos( )sin sin( )cos .

1

3

2 2

2 2

x r k

x r k

= t + c q − t + c q
= t + c q + t + c q

Чтобы перейти от q1(t), p1(t), q2(t),  p2(t), определяемых (4.5), к новым 
переменным r(t), k(t), q(t), c(t), будем использовать в (5.9) замену перемен-
ных [34]:

  1 1

2 2

 =  cos 2  cos  sin 2  sin ,  =  cos2  sin  sin2  cos ,

 =  sin 2  cos  cos 2  sin ,  =  sin2  sin  cos2  cos .

q r k p r k

q r k p r k

q c − q c − q c − q c
q c + q c − q c + q c

	 (6.1)

а также подстановку l = 0, u1 = u2 = u3 = = u4 = 0.
В результате выполненных преобразований получаем систему:

  * ( ) ( )( sin cos )2 2 2 2dr 5
1 3 3 8 5 8

d 2 8 16
k r r r k k r

g  + e + + − − q − e q  t  

h
h


= − 

 ,	 (6.2)

  * ( ) ( )( sin cos )2 2 2 2dk 5
1 3 3 8 5 8

d 2 8 16
k r k r k r k

g  + e + + + − q − e q  t  

h
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= − 

 ,	(6.3)

	 ( )cos ( )sin*
2 2d 1 3 5

1 8 8
d 4 16 32

kr k r 
 
 

q = − ν − + q − e + qh
t

 ,	 (6.4)

	 ( )( ) cos sin2 2d 3
1 3 8 10 8

d 16
k r kr 

 
 

= − + + + e q
t
c q +h .	 (6.5)

В уравнениях (6.2)–(6.5) все величины оказываются зависимыми от угла 
прецессии q(t), что является следствием использования восьми датчиков 
управления. Данный эффект зависит от количества датчиков управления, а не 
их типа, и справедлив как для электромагнитных, так и для электростатиче-
ских датчиков управления. Поэтому уравнения (6.2)–(6.5) не допускают столь 
простого анализа, как было описано в работах с шестнадцатью электростати-
ческими датчиками управления [16, 17]. Можно заметить, что уравнения (6.2), 
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(6.3) указывают на уменьшение амплитуды колебаний в результате демпфи-
рования. Уравнение (6.5) указывает на незначительное изменение частоты 
колебаний. Наибольший интерес представляет уравнение (6.4), из которого 
следует оценка модуля угловой скорости дрейфа ВТГ:

	 * ( )2 2
d 3 5
d 8 32

kr k r 
 
 

q
≤ + e +

t
h .	 (6.6)

Согласно (6.6), угловая скорость дрейфа ВТГ оценивается двумя принци-
пиально разными слагаемыми. Первое слагаемое оценки (6.6) зависит прямо 
пропорционально от амплитуд основной и квадратурной волн колебаний r, k, 
что согласуется с работами [9, 16, 17]. Для устранения угловой скорости дрей-
фа, вызываемой нелинейностью, в гироскопах данного класса амплитуду ко-
лебаний r поддерживают постоянной, а квадратуру k – стремятся уменьшить 
до нуля [9]. Однако при таком стандартном способе компенсации угловой 
скорости дрейфа ВТГ не будет компенсироваться угловая скорость дрейфа, 
оцениваемая вторым слагаемым (6.6).

Таким образом, формула (6.6) устанавливает наличие неустранимого дрей-
фа ВТГ при использовании схемы ВТГ с восьмью датчиками управления. 
В силу общности вида исследуемых нелинейных дифференциальных уравне-
ний, данный факт справедлив не только для ВТГ с электромагнитными датчи-
ками управления, но и для широко используемых ВТГ с электростатическими 
датчиками управления. Малый параметр ε характеризует электрическую цепь 
управления колебаниями: для цепи с электростатическими датчиками управ-
ления значение e ~ 10–8 экстремально мало [16], что позволяет пренебрегать 
вторым слагаемым оценки типа (6.6), но для цепи с электромагнитными дат-
чиками управления значение e ~ 0.1 приводит к огромным значениям дрей-
фа ВТГ. Чтобы уменьшить значения параметров , ,h e  влияющих на точность 
ВТГ, для схем с электромагнитными датчиками управления используется 
добавочное сопротивление. Однако следует отметить, что для схемы с шест-
надцатью датчиками управления как электростатическими [17], так и элек-
тромагнитными угловая скорость дрейфа полностью компенсируется, если 
квадратура k обращается в ноль.

Пример. Вычислим оценку угловой скорости дрейфа ВТГ с цилиндриче-
ским резонатором и восьмью электромагнитными датчиками управления. Как 
рассматривали в примере ранее, ω = 8637 c–1, безразмерные малые параметры 

. ,33 35 10−h = ⋅  e = 0.029. Сначала примем относительные амплитуды основной 
и квадратурной волн колебаний r = 0.05 и k = 0.0005 (соответственно 10 мкм 
и 0.1 мкм). Тогда оценка угловой скорости дрейфа, вычисляемая по формуле 
(6.6), складывается из

	 . ,8
1

3
3 1 10

8
kr −D = ≈ ⋅h



  ( ) .2 2 8
2

5
3 8 10

32
k r −D = e + ≈ ⋅h

 .

В размерном времени . ,4 1
1 1 2 7 10 c− −D = D w ≈ ⋅  . ,4 1

2 2 3 28 10 c− −D = D w ≈ ⋅  что 
соответствует 111 °/ч и 135 °/ч. Тогда пусть в электрическую цепь добавлено 
специальное добавочное сопротивление так, что Re = 200 Ом, при этом, чтобы 
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поддерживать то же значение тока, подается опорное напряжение U0 = 100 В. 
Тогда малый параметр / . 4

0 4 4 10eRL −e = w ≈ ⋅  и некомпенсируемая угловая 
скорость дрейфа оценивается величиной ,6 1

2 5 10 c− −D = ⋅  что соответствует 
2 о/ч и также является неприемлемым для гироскопов, применяемых в нави-
гационных системах.

Полученные расчеты позволяют сделать вывод о неприменимости схемы 
ВТГ с восьмью электромагнитными датчиками управления.

7. Нелинейные эффекты динамики резонатора в случае шестнадцати элек-
тромагнитных датчиков управления. В разделе 2 данной работы была выведе-
на наиболее общая исходная математическая модель (2.25)–(2.27), которая 
объединяет уравнения колебаний резонатора с нелинейностью, вызванной 
произвольным количеством электромагнитных датчиков управления, и син-
гулярно возмущенные уравнения электромагнитных колебаний в цепях дат-
чиков управления. В разделах 3–6 данной работы для математической моде-
ли (2.25)–(2.27)  строились приближенные математические модели в случае 
восьми датчиков управления. В итоге был сделан важный вывод о неприме-
нимости данной схемы управления колебаниями резонатора из-за наличия 
неустранимой угловой скорости дрейфа, вызванной использованием восьми 
датчиков управления. В данном разделе мы повторим действия, проделанные 
в разделах 3–5 для схемы ВТГ с шестнадцатью электромагнитными датчи-
ками управления. Во многом данные действия будут также повторять работу 
[17], где рассматривался ВТГ с шестнадцатью электростатическими датчика-
ми управления, поэтому далее опустим проводимые преобразования.

Напряжения Uj j = 1, ..., 16, подаваемые на n = 16 электромагнитов управле-
ния, имеют в данном случае вид:

	

sin cos ,
sin cos ,
sin cos ,
sin cos ,

1 9 1 2

5 13 1 2

3 11 3 4

7 15 3 4

1 1

1 1

1 1

1 1

A

A

B

B

U U u u u

U U u u u

U U u u u

U U u u u

= = + = − mt + mt

= = − = + mt − mt

= = + = − mt + mt

= = − = + mt − mt

	 (7.1)

где uA(t), uB(t) – нормализованные управляющие напряжения, подаваемые, 
соответственно, на группу электродов № 1, 5, 9, 13 и смещенную относитель-
но них на угол 45° группу электродов № 3, 7, 11, 15. На остальных электро-
дах (с четными номерами) разность потенциалов задается равной опорному 
напряжению: U2k = U0, k = 1...8.

Для компоненты y решения (2.25)–(2.27) возьмем приближения (4.3), (4.4) 
без подстановки ( )tX



 вдали от начальных условий:
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,,[ ] [ ] ,,( )
( )

( )( )
(

,
( ) )) ,

,
, ( ,

31 1 31 3
2 43 3

1
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3 1 3

1

1 3

1 82  

jjj
j j j

j j

x
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x x xx x
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x x x x x x

ddh
Y Y h

d

k

d d

j k

 t
t + 



′′
+ e ≈ − +

=


=

e



подставим их в уравнения (2.25), описывающие колебания резонатора. Ис-
пользуя (3.9) и разложения в ряд (5.1), с учетом нелинейных слагаемых до 
третьей степени, примем приближения в уравнениях, описывающих динами-
ку резонатора ВТГ:

	

(
)

(

( )

( )

,

( )

( ) ,

,

( )
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( )

(

2 2 2 2
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d
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d
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x
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x x x

+

− − + + − e −

=
t

= g + + h
t

+ +

=
t

= − g h
t

e + −

− e + − e − e ′

− − + + − e − e + −

− e + + +







))2
3 3 4 33 8 3B Bx x x u x u− e − e ′

	 (7.2)

В выведенной системе дифференциальных уравнений (7.2) видно суще-
ственное отличие нелинейных слагаемых от системы уравнений (5.2), за ис-
ключением слагаемых, содержащих управляющие напряжения. Заметим, 
что по системе дифференциальных уравнений (7.2) виден четкий физиче-
ский смысл линейных и нелинейных слагаемых. Величина ( ( )2 2

1 32 3 x x+ + −h  
( ))1 2 3 410 x x x x+− e  представляет изменение жесткости в случае применения 

электромагнитных датчиков управления, соответствующее “отрицательной 
электростатической жесткости” [16]. Величина ( ))( 2 2

1 32 5 x x+he +  соответ-
ствует усилению демпфирования при учете электрического сопротивления 
цепи управления колебаний.

Запишем (7.2) в векторно-матричной форме:

	 ( ) ( )( ) ( ) ( , ) ( )0 1 2
d
d

= + t + − e t + t
t

h h
x

A A x N x N x F  ,

	 * *

* *

( )

1

2
0

3

4

0 0 0 00 1 0 0

1 2 01 0 0 0
, ,

0 0 0 00 0 0 1

0 1 20 0 1 0

    

x

x v

x

x v

    
     −g − e−
    = = t =
    
     − −g − e−    

x A A ,

где обозначены * / ,g = g h  * /v v= h  ,

	 ( )( ) ( )

( )

2 2 2
1 3 1 1

1

2 2 2
1 3 3 3

0 0

3 ,
0 0

    A A

BB

x x x x u u

ux x x x u

   
 + +  

= t =   
      + + 

N x F ,
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+

+

N x .

Следуя алгоритму, описанному в разделе 5 данной статьи, проводя преоб-
разования, аналогичные (5.3)–(5.9), получаем стандартную форму системы 
дифференциальных уравнений для метода осреднения [17]. Проведя осредне-
ние, получим нелинейную математическую модель в медленных переменных, 
которая учитывает сопротивление электрической цепи управления колебани-
ями резонатора ВТГ с шестнадцатью датчиками управления:

	 ( ( ) ( ) )
 1 2
d
d

−+ +
t

e= h C N N
r

r r r F ,	 (7.3)
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Будем исследовать угловую скорость дрейфа ВТГ с шестнадцатью электро-
магнитными датчиками управления при наличии постоянного опорного напря-
жения: U0 ≠ 0, u1 = u2 = u3 = u4 = 0, с использованием замены переменных (6.1) 
в системе (7.3). В результате выполненных преобразований получена система:
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	(7.4)
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В отличие от уравнений (6.2)–(6.5), полученные уравнения (7.4) допускают 
достаточно простой анализ. Первые два уравнения системы (7.4) указывают 
на то, что амплитуда колебаний уменьшается в результате демпфирования. 
Из третьей формулы (7.4) следует, что угловая скорость дрейфа ВТГ задается 
формулой:

	 *d 3
d 8

kr
q

=
t

h ,	 (7.5)

в которой нет зависимости от параметра ε. Четвертое уравнение системы (7.4)  
указывает на незначительное изменение частоты колебаний. Из полученной 
формулы угловой скорости дрейфа ВТГ следует возможность полной компен-
сации дрейфа стандартной методикой, при которой амплитуду колебаний r 
поддерживают постоянной, а k уменьшают до нуля [9]. Таким образом, пока-
зано, что для ВТГ с электромагнитными датчиками управления приемлемой 
является только схема с шестнадцатью датчиками управления.

Исследуем режим вынужденных колебаний резонатора ВТГ с шестнадца-
тью электромагнитными датчиками управления при подаче управляющих 
напряжений u1 = u3 = u4 = 0, u2 = u, то есть uA(t) = u cos mt, uB(t) = 0. Вынужден-
ные колебания резонатора исследуем в медленных переменных A(t), B(t), 
j(t), y(t), которые являются амплитудами и фазами колебаний:
	 sin( ), sin( ),1 3x A x Bmt m+ j t= = + y

и будем использовать замену переменных
	 sin cos , n, si , cos1 1 2 2q A p A q B p B= j = j = y = y

в осредненной системе (7.3) с медленными переменными q1(t), p1(t), q2(t), 
p2(t). Одним из стационарных режимов колебаний является режим [34] с ну-
левой амплитудой B = 0. Тогда, используя систему осредненных уравнений в 
новых переменных A(t), B(t), j(t), y(t), запишем уравнения для определения 
амплитуды А и фазы колебаний φ:
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Далее принимаем, что
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	 sico n sins , , cos , ,1 1 2 21    0 1    1    0 1ϑ ≈ < ϑ ϑ ≈ < ϑ 

поэтому считаем, что

	 sico ns ( ) ( )22
1 2 1j + ϑ j − ϑ+ ≈ ,

и получаем из (7.6) выражение для резонансной кривой:

	
( ) ( ) .

( )* *
( ) ( ) ( ) ( )

2
2

2
2

2 2 2 2 2 2

2

2 2

2
2

15
16 2 94

 
8

8 8

84 3 4 9

A A

A A A
u

A A

A

 
  

g + e + e l
+ =

+ e + e

+ +

+ +
	 (7.7)

Таким образом, полученное аналитическое выражение (7.7) приближен-
но описывает амплитудно-частотные характеристики колебаний, учитывая, 
помимо кубической нелинейности и квадратичной нелинейности при управ-
лении, также и электрическое сопротивление цепи управления колебаниями.

Применяя к (7.7) формулу дифференцирования неявной функции, полу-
чаем условие экстремума A(λ), из которого следует, что A(λ) имеет экстремум 
в точке
	 *

29
8

Al = − .
Для определения максимального значения амплитуды подставляем полу-

ченное значение частотной настройки в выражение (7.7) и получаем нелиней-
ное уравнение относительно амплитуды А:

	 ( ) ( )max max max max( ) ( )*
22 2 2 2 2 4 24 8 15 643 04A A u A Ag + + e +− + e = ,	 (7.8)

из которого определяется Amax. Тогда можно рассчитать:

	 max max
29

8
Al = − hw ,	 (7.9)

При e > 0 Amax определяется из нелинейного уравнения (7.8) численно. При 
ε = 0 уравнение (7.8) имеет решение, задающее максимальную амплитуду при ε = 0:

	 ( ) ( )( )
max * *

0 2 2 2 2 22 2
3 3

3 3
A u u

u u
e= = g − g − = g − g − h

h
  
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.	 (7.10)

Из вычислительных экспериментов следует, что коррекция максимальной 
амплитуды при учете e > 0 происходит в сторону уменьшения, что соответству-
ет дополнительному демпфированию колебаний при учете электрического 
сопротивления цепи управления. Из формулы  следует незначительная кор-
рекция резонансной частоты при коррекции максимальной амплитуды коле-
баний в связи с учетом электрического сопротивления.
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Пример. Рассмотрим смещение резонансного пика амплитудно-частотной 
характеристики, обусловленное нелинейностью колебаний цилиндрического 
резонатора ВТГ с шестнадцатью электромагнитными датчиками управления. 
Как в предыдущем примере, примем, ω = 8637 c–1, безразмерный параметр 

. .33 35 10−= ⋅h  Управляющее напряжение . .0 01u =  Будем рассматривать ситу-
ации, когда учитывается параметр ε в двух случаях: e = 0.029 и e = 4.4 · 10–4 (при 
подключении добавочного сопротивления, см. пример в разделе 6), а также 
когда пренебрегаем ε, то есть e = 0. Пусть e = 0, тогда по формуле (7.10) полу-
чим ( )

max . ,0 0 171A e= =  lmax = –0.95 c–1. Если e = 0.029, то при численном решении 
(7.8) получим Amax = 0.168, lmax = –0.92 c–1. Если e = 0.029, то при численном 
решении (7.8) получим Amax = 0.085, lmax = –0.24 c–1. То есть если используется 
в схеме ВТГ с электромагнитными датчиками добавочное сопротивление, то 
параметр ε мал и его влияние на нелинейные свойства колебаний невелико. 
Если используется ВТГ с электромагнитными датчиками без добавочного со-
противления либо если оно мало, то необходим учет параметра ε, поскольку 
при математическом моделировании колебаний резонатора без учета ε наблю-
дается существенное искажение результатов.

Заключение. Выведена математическая модель нелинейной динамики ци-
линдрического резонатора волнового твердотельного гироскопа с электромаг-
нитными датчиками управления, которая во взаимосвязанной форме описы-
вает нелинейные колебания резонатора и электрические процессы контура 
управления колебаниями. Полученная математическая модель представляет 
нелинейную систему дифференциальных уравнений, которая содержит сингу-
лярно возмущенные уравнения, причем сингулярно возмущенными являются 
уравнения электрических процессов. Учитывалась нелинейность, вызванная 
конечным отношением малого прогиба к малому зазору датчика управления. 
Предложены способы построения приближенных решений.

Показано принципиальное отличие нелинейных слагаемых уравнений ди-
намики резонатора ВТГ при использовании восьми и шестнадцати датчиков 
управления. Показано, что при использовании электромагнитных датчиков 
управления необходимо учитывать малый параметр, сингулярно входящий 
в дифференциальные уравнения электрических процессов. Данный параметр 
экстремально мал в случае ВТГ с электростатическими датчиками, однако для 
ВТГ с электромагнитными датчиками его пренебрежение может приводить 
к неадекватным результатам математического моделирования. Показано, что 
использование добавочного сопротивления совместно с увеличением напря-
жения в цепи управления колебаниями приводит к уменьшению сингуляр-
но входящего в математическую модель малого параметра и, следовательно, 
к повышению точностных характеристик прибора. По оценке угловой ско-
рости дрейфа сделан вывод о неприменимости схемы гироскопа с восьмью 
электромагнитными датчиками управления из-за полученного значения не-
компенсируемой угловой скорости дрейфа. Для ВТГ с шестнадцатью датчи-
ками управления выведена формула угловой скорости дрейфа, которую мож-
но скомпенсировать, а также предложен способ вычисления смещения резо-
нансного пика амплитудно-частотной характеристики.

Работа выполнена при финансовой поддержке РНФ (проект 
№ 23-21-00546).
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Abstract – The article considers the nonlinear dynamics of a cylindrical resonator of 
a wave solid-state gyroscope with electromagnetic control sensors. A mathematical 
model that describes nonlinear resonator oscillations and electrical processes of 
the oscillation control circuit in an interconnected form is deduced. The resulting 
mathematical model represents a nonlinear system of differential equations, which 
contains singularly perturbed equations, and the equations of electrical processes 
are singularly perturbed. The nonlinearity caused by the finite ratio of the small 
deflection to the small gap of the control sensor is taken into account. The methods 
of constructing approximate solutions are proposed. The fundamental difference 
between the nonlinear terms of the equations of resonator dynamics using eight 
and sixteen control sensors is shown. It is shown that by using electromagnetic 
control sensors it is necessary to take into account a small parameter singularly 
included in the differential equations of electrical processes. According to the 
estimation of the angular drift velocity, it is concluded that the gyroscope circuit 
with eight electromagnetic control sensors is inapplicable due to the obtained value 
of the uncompensated angular drift velocity. In the case of a gyroscope with sixteen 
control sensors, a formula for the angular drift velocity which can be compensated 
is derived and a method for calculating the displacement of the resonant peak of 
the amplitude-frequency response is proposed.

Keywords: wave solid-state gyroscope, electromagnetic sensors, cylindrical 
resonator, nonlinear differential equations, singularly perturbed equations, 
nonlinear oscillations, drift angular velocity
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