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Рассматривается динамика изотропной термоупругой среды при образо-
вании трещин с произвольной геометрией ее поверхности и нераскры-
вающимися берегами. При таком процессе в среде возникают ударные 
термоупругие волны. Рассмотрен закон сохранения энергии для термо-
упругой среды с учетом ударных волн. Для ударных термоупругих волн 
с использованием метода обобщенных функций получены условия на 
скачки напряжений, скоростей, тепловых потоков и плотности энер-
гии на их фронтах. Модель трещины определяет взаимосвязь между 
скачками напряжений и скоростями относительного смещения берегов 
трещины. Задача поставлена и решена в пространстве обобщенных век-
тор-функций. Решение представлено в виде тензорно-функциональной 
свертки тензора Грина уравнений связанной термоупругости с сингуляр-
ной массовой силой, содержащей простые и двойные слои, плотности 
которых определяются скачком скоростей, напряжений, температур и 
тепловых потоков на берегах трещины. Последние определяют модель 
трещины и предполагаются известными.
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1. Введение. Теория трещин занимает особое место в механике твердого 
деформируемого тела. Важное практическое значение задач прочности, вы-
яснение причин таких явлений, как разрушение и потеря несущей способ-
ности конструкции, усовершенствование материалов, требует изучения 
механики разрушения. Можно назвать и другие области, где статика и ди-
намика трещин играют важную роль: геология, сейсмология, судоходство 
в ледовых условиях и т.д. В сейсмологии, например, изучение очагов 
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землетрясений методами математического моделирования приводит к зада-
чам динамики трещин в деформируемых твердых средах. Наиболее изученны-
ми являются задачи статики и динамики прямолинейных и плоских трещин 
в упругих и упругопластических средах в работах Д. Райса, Черепанова Г.П., 
Гузя А.Н., Слепяна Л.И. и других [1–6]. Однако поверхность трещины может 
иметь сложную геометрию, поэтому актуальной является задача возникнове-
ния таких трещин и динамических процессов, сопровождающих их появление 
и развитие. Отметим, что число работ в этом направлении весьма ограничено. 
Разработка эффективных моделей для изучения таких явлений является акту-
альной научной проблемой.

В работе [7] с использованием метода обобщенных функций разработа-
на модель динамики упругой среды при образовании трещины произвольной 
геометрии с нераскрывающимися берегами. Здесь рассматривается матема-
тическая модель динамики породного массива при образовании трещины с 
использованием модели связанной термоупругости. Эта модель учитывает как 
упругие, так и теплопроводные свойства среды. Задача поставлена и реше-
на в пространстве обобщенных функций. С использованием трансформанты 
Лапласа тензора Грина [8, 9] решение представлено в виде тензорно-функ-
циональной свертки тензора с сингулярной правой частью уравнений термо-
упругости, содержащей простые и двойные слои, плотности которых опреде-
ляются скачком скоростей, напряжений, температур и тепловых потоков на 
берегах трещины.

При возникновении трещин в среде возникают ударные термоупругие 
волны [10], на фронтах которых происходит скачок напряжений, скоростей и 
тепловых потоков. С использованием метода обобщенных функций опреде-
лены условия на фронтах ударных волн.

2. Определяющие соотношения связанной термоупругости. Изотропная тер-
моупругая среда характеризуется конечным числом положительных термо-
динамических параметров: массовой плотностью ρ, упругими постоянными 
Ламе λ и µ, а также термоупругими константами ν, η и κ [11].

Обозначим ui(x, t), sij(x, t) (i, j = 1, 2, 3) – компоненты вектора перемеще-
ний u(x, t) и тензора напряжений, u4 = q(x, t) – относительная температура 
q = T – T0, Т – абсолютная температура, x = xj ej (всюду по повторяющимся ин-
дексам суммирование от 1 до 3).

Тензор напряжений связан с перемещениями u(x, t) и температурой q(x, t) 
соотношением Дюамеля–Неймана [11]:

	 ( ) ( ), ,divij ij i j j iu u us = l − νq d + m + .	 (2.1)

Здесь ej – базисные векторы, dij – символ Кронекера, , i
i j

j

u
u

x
∂

≡
∂

.

Уравнения движения термоупругой среды в лагранжевой декартовой си-
стеме координат описываются системой:
	 , ,ij j i iF us +ρ = ρ 

	 divu Qq = k∆q − h +

 , i, j = 1, 2, 3,	 (2.2)
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где Fj – компоненты массовой силы; Q – мощность теплового источника; точ-
кой над символом обозначено дифференцирование по времени. С учетом (2.1) 
система (2.2) приводится к виду:

	 ( ) , , ,2 2 2
1 2 22 j ji i jj i i ic c u c u F u− + −gq + =  ,

	 ,1 1 0j ju Q− −∆q − k q − h +k =


 ,	 (2.3)

где g = ν ρ , h = h k , ( )2
1 2c = l + m ρ , 2

2c = m ρ  – скорости продольных и по-
перечных упругих волн в упругой среде с теми же упругими параметрами.

3. Ударные термоупругие волны. Условия на фронтах. Система уравнений 
(2.3) смешанного гиперболо-параболического типа. Ее характеристическое 
уравнение имеет вид:

	 ( ){ } ( ){ }det , det ,22 e
ij t ij tL v v v L v v= , 

3
2 2

1
i

i

v v
=

= ∑ ,	 (3.1)

где Li
e
j – главная часть оператора Lij(∂x,∂t), содержащая только старшие произ-

водные второго порядка, и является дифференциальным оператором уравне-
ний движения соответствующего упругого тела (λ, µ, ρ), (v, vt) = (v1,v2,v3,vt)  – 
вектор нормали к характеристической поверхности в R 4 = {(x, t)}. Из (3.1) сле-
дует, что

	 либо ,
=

=∑
3

2

1

0i

i

v  либо { }det ( , ) .= 0e
ij tL v v

Первое уравнение описывает характеристическую поверхность классиче-
ского параболического уравнения, которая не определяет волновой фронт 
в R4. Второе – описывает волновые фронты Fi, движущиеся в R3 со скоростью

	 2

1

N

t i
i

c v v
=

= − ∑ , ,jc c=  j = 1, 2.	 (3.2)

Т.е. волновые фронты (термоударные волны) в термоупругой среде движутся 
со скоростью продольных ( j = 1) и поперечных ( j = 2) упругих волн.

Для вывода условий на фронтах удобно использовать аппарат теории обоб-
щенных функций. В трехмерном пространстве обобщенных функций D3′(R 4) с 
учетом правил дифференцирования обобщенных функций [12] обобщенные 
производные функций с разрывом первого рода имеют вид:
	 [ ]ˆ , , ( , )i j i j j i FF

u u v u x t= + d ,

	 [ ]ˆ , , ( , )i t i t t i FF
u u v u x t= + d ,

	 [ ]( )ˆ , , , ( , ) ( , ) ,i jk i jk k i j F j i F kFF
u u v u x t v u x t = + d + d  ,	 (3.3)

	 [ ] [ ]( )ˆ , , , ( , ) ( , ) ,i tt i tt t i t F t i F tF F
u u v u x t v u x t= + d + d ,
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где [ui, j]F = [ui, j]Ft
 – скачок частной производной ∂ui /∂xj на фронте ударной вол-

ны, ui, jk, ui, tt – классические вторые частные производные по соответствую-
щим координатам, a(x, t)dFt(x, t) – сингулярная обобщенная функция – про-
стой слой на фронте ударной волны, плотность которого определяется скач-
ком производных на нем и вектором ν. Здесь и далее помечаем шапочкой 
регулярную обобщенную функцию, соответствующую ui(x, t). С учетом этих 
равенств уравнения движения в пространстве обобщенных вектор-функций 
D3′(R 4) имеют вид:

( ) ( )

( )
( )

,
ˆˆ ˆ , [ ] [ ] [ ] ( , ) [ ] ,

ˆˆ ˆ ˆ, , , ( , )

( , ) ,

1 1 1

l l

kl
ij j i tt i ij F j t i F F F ij k F l F

j

t j jt j j j t FF

j j j t FF

u F u x t C u
x

u Q u v v x t

v u v x t

− − −

∂
s − ρ + = s ν − ρν − ρg q d + ν d

∂

 ∆q − k q −h +k = q −h − k q d + 

 + ∂ q − h d 





	 (3.4)

где квадратная скобка означает скачок функции на характеристической по-
верхности F в R 4, соответствующей волновому фронту в R3, Ci

k
j
l – тензор упру-

гих констант, вообще говоря, анизотропной термоупругой среды. Он удовле-
творяет условиям симметрии по перестановке любой пары индексов и поло-
жительной определенности соответствующей квадратичной формы [11]:

	 0kl i j
ij k lC e e >  для 0i

k∀e ≠ ,	 (3.5)

	 kl kl lk ij
ij ji ij klC C C C= = = .

Для изотропной термоупругой среды он имеет вид: 

	 ( )kl kl k l l k
ij ij i j i jC = ld d + m d d + d d .	 (3.6)

Здесь , ,kl l
ij kd d d  – символ Кронеккера.

Следовательно, для того чтобы û  и q̂  были обобщенными решениями 
(3.4) и сохранялась сплошность среды, должны выполняться следующие усло-
вия на скачки решения на характеристической поверхности:

	
[ ] ( )

,

, , .1

0

0 0
l

j j t

ij j t i j j j tFF F

v u v

u u v v−

 q − h = 
  s ν − ρν = q −h − k q =    

	 (3.7)

Если ввести m-волновой вектор – единичный вектор, перпендикулярный 
Fl, направленный в сторону распространения волны с компонентами
	 ( ) ( ) ( ) /j j j jm x m x e v x e v= = ,	 (3.8)
тогда с учетом (3.7) из них получим законы сохранения на подвижных волно-
вых фронтах  в R3:
	 [ ] [ ], ,0 0

F F
u = q = 	 (3.9)

	 [ ]
ll

j ij l i FF
m c u s = −ρ   ,	 (3.10)
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	 ( ) ( ), ,grad
l lF F

m u mq = h       .	 (3.11)

Первое равенство (3.9) является условием сохранения сплошности среды, 
второе показывает, что на фронтах термоударных волн температура среды 
непрерывна. Из (3.10) следует, что скачок напряжений на фронте ударной 
волны пропорционален скачку скоростей, что наблюдается и для скачка гра-
диента температуры (теплового потока) (3.11).

В силу непрерывности u выполняется условие равенства касательных 
производных к фронту, которое имеет вид:

	 ,[ ] 0j i t i jv u v u− =   i = 1, 2, 3, 4,  j = 1, 2, 3,	 (3.12)

поскольку вектора ( , ..., , )1
i i i

t N t iv v vτ = d d −  лежат в касательной плоскости к F:

	
4 3

1 1

0i i
j j j t j i t i t i t

j j

v v v v v v v v v
= =

τ = d − = − =∑ ∑ .

Условие (3.10) дает связь между скачком напряжений и скачком скоро-
стей на фронте ударной волны и совпадает с известным законом сохранения 
импульса на фронтах ударных волн в упругих средах [14]. Из уравнения (3.11) 
следует, что на фронтах термоударных волн градиент температуры терпит ска-
чок, пропорциональный скачку нормальной составляющей к фронту скоро-
сти перемещений среды.

4. Закон сохранения энергии. Рассмотрим закон сохранения энергии для 
термоупругой среды с учетом ударных волн. Для удобства выкладок удобно 
представить тензор напряжений sij в виде:

	 ,kl
ij ij k l ijC us = −gd q .	 (4.1)

Введем плотность энергии термоупругой среды:

	 ( ) ( ){ }, , . , ,2 1 20 5 ij i j j jW u t u u u
−q = s +ρ + gq +g hk q =

	 ( ){ }, , , 2 1 20 5 kl
ij i j k lC u u u

−+ρ + g hk q ,  i, j = 1,2,3.	  (4.2)

Рассмотрим область 3S R− ⊂ , ограниченную поверхностью S.
Т е о р е м а. Закон сохранения энергии для термоупругой среды имеет вид:

	 ( ) ( )( ), , , , ( ) ( )2

0

0
t

S S

W u t W u dV x dt grad dV x
− −

q − q + q =∫ ∫ ∫

	 ( ) ( ), ( ) , ( )1

0 0

t t
S S S S

N

S S

dt u g q dS y dt F u F dV x
−

+
g kg   + q + + q      h h∫ ∫ ∫ ∫  ,	 (4.3)

где ( ) ...1 3dV x dx dx= .
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Д о к а з а т е л ь с т в о. В областях дифференцируемости решений умно-
жим первое уравнение системы (3.4) скалярно на iu , а второе – на 1−gh q  и 
просуммируем по i от 1 до 3. Группируя члены, получим:

	 ( ), , , , , . 21 1 0 5i ij j j i j ij j j tu u u− −s + gh qq − s − gh q q − ρ∂ −  

	 ( ). , .1 2 1
10 5 0t j j i i Nu u F F

− −
+− g hk ∂ q − gq + + gkh q = 

Поскольку
	 ( ), . , , , ,0 5 kl

i j ij ij i j k l t i ju C u u us = −gq  ,
равенство преобразуется к виду:

	 ( ), , , .21 1 1
4grad 0i ij j j t j ju W u F F− − −s + gh qq − −gh q + + gkh q = 

Проинтегрируем по ( , )0S t−× , используя формулу Остроградского–Гаусса 
[13] для каждой из подобластей, разделенных фронтами термоударных волн:

	 ( ) ( ) ( )( ), , ( ) , , , , ( )1

0

0
t

i j ij j j

S S

dt u n dS y W u t W u dV x
−

−s + gh qq − q − q −∫ ∫ ∫

	 ( )( ) , ( , , ) ( )21 1

0

grad
t

i ij j j t
F

F FS

dt dV x u v W u t v dF x
−

− − −gh q + s + gh qq − q + ∑∫ ∫ ∫ 

	 ( ) ( )1

0

0
t

j j

S

dt u F Q dV x
−

−+ + gh q =∫ ∫  .

Здесь dF – дифференциал площади характеристической поверхности F, соот-
ветствующей волновому фронту Fl. Поскольку внешняя нормаль ограничи-
вающей подобласти поверхности волнового фронта отличается только зна-
ком, при интегрировании по граничным поверхностям в смежных областях 
в подынтегральных выражениях стоят скачки соответствующих функций на 
фронтах.

Вычислим эти скачки. Для этого используем условия на фронтах 
(3.7)–(3.11):
	 ( ), ( , , )1

i ij j j tu v W u t v− s + gh qq − q = 


	 . ( ) . ( , ) , . ( , )1 1 20 5 0 5 0 5i ij j i t ij t i j i j j j t j ju v u v v u u v v v u− − = s − ρ − s − + gh qq − hq +k q =   

	 [ ] [ ],. . . ,0 5 0 5 0 5 kl
i ij j i t i ij j i t i j ij k lu v u v u v u v u C u− − − = − s − ρ + s − +    

	 [ ],. , . ,10 5 0 5t i j ij j j t j jv u v v u− −    + g q d + gh q q − gq =   

	 . , . , , . ,10 5 0 5 0 5ij j i t i j t j j j j t j jv u v u v u v v u− −       = s − − g q + gh q q − gq =       

	 ( ) ( ), ,1 0j j j j j t j ju v u v v u−  gh q q −h + h − =   .	 (4.4)
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Здесь верхние индексы “+” и “–“ обозначают предельные значения соответ-
ствующих функций с одной и другой стороны волнового фронта.

Интегрируем по поверхностям всех волновых фронтов в области интегри-
рования. Окончательно получим:

	 ( ) ( ), , ( ) ( )1 1
1

0 0

t t

i j ij j j j j N

S S

dt u n dS y dt F u F dV x
−

− −
+s + gh qq + + gh kq =∫ ∫ ∫ ∫ 

	 ( )( , , ) ( , , ) ( ) ( )2

0

0 grad
t

S S

W u t W u dV x dt dV x
− −

− q − q + q∫ ∫ ∫ .	 (4.5)

Используя введенные обозначения для граничных функций, отсюда полу-
чим закон сохранения энергии.

Из этой теоремы следует:
Следствие. Скачок плотности энергии на фронтах термоударных волн 

равен
	 [ ] ( )( , , ) ,1 1 gradi ij i jF F

W u t c u n e n− − q = − s + gh q q  .	 (4.6)

Эти соотношения можно использовать для тестирования результатов рас-
четов процессов, сопровождаемых ударными волнами.

5. Постановка задачи для термоупругой среды с трещиной. Рассмотрим не-
развивающуюся трещину в термоупругой среде, которую будем моделиро-
вать поверхностью Ляпунова F в R3 с краем. До начального момента време-
ни t  = 0 среда находилась в статическом термонапряженном состоянии uS(x), 
sij

S(x), qS(x), в ней не было трещин. В момент t = +0 в среде возникает трещи-
на (условия возникновения трещины здесь не обсуждаются). При этом на ее 
поверхности F происходит подвижка берегов трещины и сброс напряжений, 
который характеризуется скачком (3.10):

	 ( , ) ( , ) ( )ij j iF
P x t x t n x e = s  .	 (5.1)

При этом статическое состояние среды нарушается, возникают термо-
упругие ударные волны, которые распространяются в среде. Ее динамиче-
ское состояние можно описать в рамках линейной теории термоупругости 
величинами:
	 ( , ) /u x t t∂ ∂ , ( , ) ( )S

ij ijx t xs + s , ( , ) ( )Sx t xq + q ,	 (5.2)
где динамические составляющие u(x, t), sij(x, t), q(x, t) удовлетворяют уравне-
ниям (3.7) (но уже в отсутствии статических массовых сил и тепловых источ-
ников) и начальным условиям:
	 ( , )0 0u x = , ( , )0 0u x = , ( , )0 0xq = , x F∉ .	 (5.3)

Cкачок напряжений на трещинах в реальных материалах и средах опре-
деляется их физико-механическими свойствами и зависит прежде всего от 
скачка скоростей относительного смещения берегов трещины. Точнее, они 
взаимосвязаны и связаны с пределами прочности материалов на растяжение 
и сдвиг. Здесь полагаем
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	 ( ) [ ] ( )( ), , , ,gradj ij i FF FF
n u n n s = c q k q         , i = 1,2,3,	 (5.4)

где ci – известные функции, а скачки [( , )]Fu n , [q]F, [(grad q, n)]F известны либо 
связаны какими-то соотношениями, которые определяют модель трещины 
(свободная трещина, вязкий контакт берегов и т.п.). Эти связи позволяют мо-
делировать различный тип взаимодействия берегов трещины, которая здесь 
является нераскрывающейся (берега трещины в процессе взаимодействия не 
отходят друг от друга).

Требуется определить u(x, t), sij(x, t), q(x, t) как решение уравнений (2.3), 
удовлетворяющих начальным условиям (5.3), граничным условиям на скачки 
на берегах трещины (5.4) и условиям излучения на бесконечности:

	 ( , ) 0u x t = , ( , ) 0x tq =  при 1x c t d> + ,	 (5.5)

где d = max || x – y ||, x ∈ F, y ∈ F. Последнее условие связано с конечностью ско-
рости распространения термоупругих волн.

6. Построение решения задачи в пространстве обобщенных функций. Для ре-
шения поставленной задачи воспользуемся аппаратом теории обобщенных 
функций по методу, разработанному в работе [7] для исследования динами-
ки упругой среды с трещиной. Запишем соотношение Дюамеля–Неймана и 
уравнение движения термоупругой среды в более общем и удобном для вы-
кладок виде:
	 ,kl

ij ij k l ijC us = −gqd   i, j = 1,2,3,	 (6.1)

	
, , , ,

, , .1 1
0

kl
ij k lj i i i tt

t j j

C u F u

u Q

−gq +ρ = ρ

∆q − q −h + =
k k



	 (6.2)

Здесь тензор упругих констант Ci
k
j
l имеет вид (3.6).

А теперь рассмотрим решение поставленной задачи как обобщенную век-
тор-функцию на пространстве обобщенных вектор-функций медленного 
роста:
	 ( )ˆ( , ) ( , ), ( , ), ( , ), ( , ) ( )1 2 3 4u x t u x t u x t u x t u x t H t= ,

где H(t) – функция Хевисайда.
Используя свойство производных регулярных обобщенных функций со 

скачком на S:
	 ˆ ( )k j k j j k SS

u u u n x ∂ = ∂ + d  .	 (6.3)

Здесь первое слагаемое справа – классическая производная, сингулярная 
обобщенная функция dS(x) – сингулярная обобщенная функция – простой 
слой на S [12, 13].

Согласно (6.2) и (6.3), обобщенное решение удовлетворяет следующей си-
стеме уравнений:
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[ ]( ) [ ]

[ ]( )

ˆˆ , , ( ) ( ) ,

ˆ ˆ ˆ, , ( ) , ( ).1 1
grad

kl
ij j i tt i ij j S ij k l S i SSS

j

t j jt j j S j SS S

u F n x C u n x n
x

u Q n x u n x

∂ s −ρ = − + s d + d − g q  ∂

 ∆q − q −h = − + ∂ q d − q − h d k k


	(6.4)

Здесь в правой части уравнений появляются сингулярные обобщенные 
функции – простые и двойные слои на S с плотностями, зависящими от скач-
ка напряжений, перемещений, температуры и ее градиента на трещине.

Для построения обобщенного решения полученного уравнения восполь-
зуемся его фундаментальным решением ˆ ( , )i

mU x t  – тензором Грина системы 
уравнений термоупругости [8, 9]. Согласно его свойству, решение уравнения 
(6.2) можно представить в виде тензорно-функциональной свертки тензора 
Грина с правой частью уравнений (6.4). Используя правила дифференциро-
вания сверток обобщенных функций в результате, получим обобщенное ре-
шение поставленной задачи в следующем виде:

	 [ ] [ ]ˆ ˆ ˆˆ ( ) , ( ) ( ) ( ) ,4
m

i kl i
m ij j S ij m j k l S i S m iSSS

u U n x C U u n x H t n x U = ∗ s d + ∗ d − g q d ∗ + 

	 [ ]( ) [ ]ˆ ˆ( ) , ( )4 4gradj S j m t S mS S
n x U u n x U+ q d ∗ ∂ − q − h d ∗

	 [ ]( ) [ ]ˆ ˆ ˆˆ ( ) ( ) ( )4 4 4
i kl i i

ij j S k l S ij SSSS
j

n x U u n x C U x U
x
∂ q = s d ∗ + d ∗ − gh q d ∗ +  ∂

	 ( ) [ ]( )ˆ ˆ, ( ) ( )4 4
4 4grad t S j j SSS

U u n x U n x + ∗ q − h d − ∂ ∗ q d    m,i,j = 1,2,3,	(6.5)

и оно единственно в классе функций, допускающих свертку с Û .
7. Тензор Грина уравнений движения термоупругой среды и его преобразова-

ние Лапласа. Используем свойства фундаментальных решений для построе-
ния решений системы (6.5). Фундаментальные решения – это решения при 
действии импульсных сосредоточенных источников типа:

	 ( ) ( )j
i iF x t= d d d ,  i, j = 1, 2, 3, 4.	 (7.1)

Фундаментальные решения определяются с точностью до решений одно-
родной системы уравнений. Среди всех таких решений мы выделяем тензор 
Грина Uij(x, t), который удовлетворяет условиям излучения и затухания реше-
ния на бесконечности:
	 ( , ) 0j

iU x t =  при t < 0,	 (7.2)

	 ( , ) 0j
iU x t →  при ,0t x> → ∞  либо ,0t t> → ∞ .

Он описывает перемещения и температуру среды при действии им-
пульсных источников, сосредоточенных в точке x = 0 и порождающих термо-
упругие волны, распространяющиеся от источника на бесконечность. Зна-
чения его компонент зависят от направления действующей импульсной со-
средоточенной силы ( j = 1,2,3) или действия сосредоточенного импульсного 
теплового источника (  j = 4).
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Аналитически с использованием преобразования Фурье по координатам и 
преобразования Лапласа по времени возможно построение только трансфор-
манты Лапласа по времени тензора Грина ( , )k

jU x p . Эта трансформанта была 
построена ранее в работе [12].

Для N = 3 эти компоненты имеют следующий вид:

{ }, , ( , ) ( , )1 23 2

1
4 k k

i i k iU r r Y r p Y r p
r

πm = + d
b

, ( )
,

( , )4
32 2 2

2 1

4 i
i

r m
U Y r p

r
πk =

ζ − ζ
,	 (7.3)

( )( )
,

( , )4 32 2 2
2 1

4
2

k kpr
U Y r p

r

h
π =

l + m ζ − ζ
, ( )

( , )4
4 42 2

2 1

1
4 U Y r p

r
πk =

ζ − ζ
, i, k = 1, 2, 3.

Здесь введены динамические функции ( , )kY r p :

	 ( )( )( )
( , ) 1

2
2 21

1 1 12 2
2 1

1
3 1 rq

Y r p r r e−ζ
+ e − ζ

= + ζ + ζ −
ζ − ζ

	
( ) ( )( )

2

2 2 2 22
2 22

2 2
2 1

3 1 3 11
r r

r r r rq

eeζ b

+ ζ + ζ + b + b+ e − ζ
− −

ζ − ζ
,	 (7.4)

	
( ) ( ) ( ) ( )( , ) 1 2

2 2
1 2

2 1 22 2 2 2
2 1 2 1

1 1
1 1r rq q

Y r p r e r e−ζ −ζ+ e − ζ + e − ζ
= + ζ + + ζ

ζ − ζ ζ − ζ
+

	 ( )1 1 rr r e−b+ + b + b   ,

	 ( , )
1 2

1 2
3

1 1
r r

r r
Y r p

e eζ ζ

+ ζ + ζ
= − , ( ) ( )( , ) 1 22 2 2 2

4 1 2
r rY r p e e−ζ −ζ= a − ζ − a − ζ ,

где r  = || x ||, r,i = xj/r, a = p/c1, b = p/c2, q = p/k, m = g/(l + 2m), e = ghk/(l + 2m).
Значения ki (i = 1, 2, 3) – это корни характеристического уравнения си-

стемы (2.3):
	 ( ){ }det , 0kjL i p− ξ = , ( ), ,1 2 3ξ = ξ ξ ξ .	 (7.5)

Характеристическое уравнение имеет вид:

	
2 2

2 2 2 2 2
2 2 2

2 1

0
p p p p

c
c c

     e  ξ + ξ + ξ − − ξ =         k k      
, 2 2 2 2

1 2 3ξ = ξ + ξ + ξ ,

имеет 6 корней, квадраты которых равны:

	
( ) ( ) 22 2 3

2
1 2 2 2

1 1 1

1 11 4
2

p pp p ip

c c c

  + e + e ζ = − + − +   k k k   
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( ) ( ) 22 2 3

2
2 2 2 2

1 1 1

1 11 4
2

p pp p ip

c c c

  + e + e ζ = − − − +   k k k   

	
2

2
3 2

2

p

c
ζ = −  

При этом при выборе корней необходимо, чтобы
	 Re 0jζ ≥ , Im 0jζ ≥ .	 (7.6)

Первое условие обеспечивает затухание решения при удалении от трещи-
ны. Второе условие описывает волны, движущиеся от поверхности трещи-
ны. Эти условия являются условиями излучения для поставленной краевой 
задачи.

Тензор Грина имеет следующие свойства симметрии:

	 ( , ) ( , )j i
jiU x p U x p= , ( , ) ( , )j j

i iU x p U x p− = , i, j = 1, 2, 3,

	
( )

( , ) ( , )4
4

2 i
i

m
U x p U x p

p

l + m
=

h k
, ( , ) ( , )4 4

i iU x p U x p− = − ,

	 ( , ) ( , )4 4
i iU x p U x p− = − , ( , ) ( , )4 4

4 4U x p U x p− = .
8. Преобразование Лапласа обобщенного решения задачи. Если использо-

вать свойства преобразования Лапласа свертки и регулярность трансформан-
ты тензора Грина, тогда интегральное представление перемещений и темпе-
ратуры (6.5) в пространстве преобразования Лапласа по времени выглядит 
следующим образом:

	 ( , ) ( , ) ( , ) ( )
3

i
m m i

R

u x p U x y p F y p dV y= − − −∫ ( , ) ( , ) ( )
3

41
m

R

U x y p Q y p dV y−
k ∫ +

	 ( , ) ( , ) ( ) ( )i
m ij jS

S

U x y p y p n y dS y + − s ∫  –

	 [ ]( , )
( , ) ( ) ( )

i
kl m
ij k lS

j
S

U x y p
C u y p n y dS y

y
∂ −

− +
∂∫

	
( , ) ( , )

( ) ( , ) ( ) ( , ) ( )
( )

4 4
m m

i S S
i

S S

U y x p U y x p
n y y p dS y y p dS y

y n y
∂ − ∂ −

   +g q − q −   ∂ ∂∫ ∫

	 ( )( , ) ( , ), ( ) ( , ) ( )
( )

4
m

SS

y p
p u y p n y U y x p dS y

n y
 ∂q

− − h − ∂ ∫ , m = 1, 2, 3,	 (8.1)

	 ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( )
3 3

4
4 4

1i
i

R R

x p U x y p F y p dV y U x y p Q y p dV yq = − − − − +
k∫ ∫
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	 ( , ) ( , ) ( ) ( )4
i

ij jS
S

U x y p y p n y dS y + − s ∫

	 [ ]( , )
( , ) ( ) ( )4

i
kl
ij k lS

j
S

U y x p
C u y p n y dS y

y
∂ −

− +
∂∫

	
( , )

( , ) ( ) ( , ) ( )
( )

4
4

4
i

iS
S

U y x p
y p n y U y x p dS y

n y

 ∂ −
 + q − g − −    ∂ 
∫

	 ( )( , ) ( , ), ( ) ( , ) ( )
( )

4
4

S S

y p
p u y p n y U y x p dS y

n y
 ∂q

− − h − ∂ ∫ .	 (8.2)

Таким образом, при известных значениях скачка скоростей берегов трещи-
ны, скачка температуры и теплового потока на берегах трещины все входящие 
функции в правую часть перемещений (8.2) известны. Трансформанта Лапла-
са решения построена. Для построения оригинала решения в пространстве-
времени используем обратное преобразование Лапласа:

	 ( , ) ( , ) , .
0

0

0
1

0
2

p i

pt

p i

u x t u x p e dp p

+ w

− w

= >
π ∫   0 0p > ,  0p p i= + w .

Решение задачи построено.
9. Заключение. Построенное решение позволяет моделировать динамиче-

ские процессы в породном массиве при образовании неразвивающейся тре-
щины, поверхность которой может быть любой формы. Кроме того, оно дает 
возможность определить влияние по отдельности скачка перемещений, ско-
ростей, напряжений, температур и тепловых потоков на ее берегах на тер-
моударные волны и поэтому очень удобно для исследования сейсмических 
процессов в земной коре при реальных землетрясениях, причиной которых 
является именно возникновение трещин.

Заметим также, что замена параметра Лапласа p на –iw дает решение зада-
чи стационарных колебаний с частотой w скачков скоростей и напряжений на 
трещинах, что можно использовать в материаловедении при дефектоскопии.

Работа выполнена при финансовой поддержке Комитета науки Министер-
ства науки и высшего образования Республики Казахстан в рамках програм-
мы BR20281002 “Фундаментальные исследования в математике и математи-
ческом моделировании” и грантового проекта AP23488145 “Моделирование 
тепловых и волновых процессов в термоупругих стержневых конструкций на 
графах”.
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Abstract – The dynamics of an isotropic thermoelastic medium during the 
formation of cracks with an arbitrary surface geometry and non-opening edges 
is considered. The shock thermoelastic waves arise in the medium during such a 
process. The energy conservation law for a thermoelastic medium is considered 
considering shock waves. For shock thermoelastic waves, using the method of 
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generalized functions, conditions are obtained for jumps in stresses, velocities, 
heat fluxes and energy density on their fronts. The crack model determines the 
relationship between jumps in stresses and velocities of relative displacement of 
the crack edges. The problem is posed and solved in the space of generalized vector 
functions. The solution is presented as a tensor-functional convolution of the 
Green’s tensor of the equations of coupled thermoelasticity with a singular mass 
forces containing simple and double layers whose densities are determined by the 
jump in velocities, stresses, temperatures and heat fluxes on the crack edges. The 
latter determine the crack model and are assumed to be known. 

Keywords: equations of coupled thermoelasticity, crack, temperature, displacement, 
stress, heat flow, shock thermoelastic waves, Green’s tensor, Laplace transform, 
generalized function method

REFERENCES

1.	  Rice J. Mechanics of the earthquake focus. М.: Mir, 1982. 217 p.
2.	  Cherepanov G.P. Methods of Fracture Mechanics. Solid Matter Physics. Dordrecht: 

“Kluwer”, 1997. 314 p.
3.	  Guz A.N., Kaminskyi А.А., Gavrilov D.A., Zozulya V.V. Nonclassical problems of 

fracturemechanics. Kiev: Naukova Dumka. 4 vol. 1990–1994.
4.	  Slepian L.I. Mechanics of cracks. Shipbuilding. 1990. 295 p.
5.	  Lykotrafitis G., Georgiadis H.G., Brock L.M. Three-dimensional thermoelastic wave 

motions in a half-space under the action of a buried source // Int. J. Solids Struct. 2001. 
V. 38. P. 4857–4878.

	 https://doi.org/10.1016/S0020-7683(00)00311-5
6.	  Naeeni M.R.,. Eskandari-Ghadi M., Ardalan A.А., Sture S., Rahimian M.. Transient 

response of a thermoelastic half-space to mechanical and thermal buried sources // 
ZAMM. 2015. V. 95. № 4. P. 354–376.

	 https://doi.org/10.1002/zamm.201300055
7.	  Alexeyeva L.A., Dildabayeva I.Sh. Generalized solutions of the equations of the dynamics 

of an elastic medium with a crack // Mathematical J. 2007. V. 8. № 3. P. 11–20.
8.	  Kupradze V.D., Gegelia T.G., Basheleshvili M.O., Burchuladze T.V. Three-dimensional 

problems of the mathematical theory of elasticity and thermoelasticity. M: Nauka, 1976. 
664 p.

9.	  Alexeyeva L.A., Kupesova B.N. The method of generalized functions in boundary value 
problems of coupled thermoelastodynamics // Applied Mathematics and Mechanics. 
2001. V. 65. № 2. P. 334–345.

10.	  Alexeyeva L.A., Аlipova B.N., Dadaeva A.N. Shock waves as generalized solutions 
of thermoelastodynamics equations. On the uniqueness of boundary value problems 
solutions // AIP Conference Proceedings. 2017. V. 1798. P. 020003.

	 https://doi.org/10.1063/1.4972595
11.	  Nowacki W. Dynamic problems of thermoelasticity. M.: Mir, 1970. 256 p.
12.	  Vladimirov V.S. Generalized functions in mathematical physics. M.: Nauka, 1976.
13.	  Vladimirov V.S. Equations of mathematical physics. M.: Nauka, 1976.
14.	  Petrashen G.I. Propagation of waves in anisotropic elastic media. M.: Nauka. 1980. 280 p.


