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1. Введение. Для спутника, моделируемого одним абсолютно твердым 
телом, задача о резонансных движениях в центральном гравитационном 
поле исследовалась в работах В.В. Белецкого, Ф.Л. Черноусько, А.П. Мар-
кеева и других авторов [1–3]. В рамках такой гамильтоновой модели устой-
чивые резонансные вращения спутника в гравитационном поле можно на-
блюдать только в том случае, когда начальные значения фазовых перемен-
ных попадают внутрь какой-либо из резонансных зон, вероятность чего 
невелика, поскольку размеры этих резонансных зон сравнительно малы [1].

Для спутников с внутренней диссипацией, как показано в работах [4–
8], вращательные движения как резонансные, так и нерезонансные пред-
ставляют собой в общем случае эволюционирующие процессы. При этом 
внутренние диссипативные силы и служат тем механизмом, который обес-
печивает захват спутников в резонансные вращения, а наблюдаемые про-
странственные резонансные движения характеризуются таким свойством, 
что на протяжении всего резонансного процесса величина угловой скоро-
сти спутника остается практически неизменной, кратной угловой скорости 
орбитального базиса, а ось вращения спутника монотонно эволюционирует 
в сторону нормали к плоскости орбиты.

В данной работе, как и ранее [4–8], для описания влияния внутрен-
ней диссипации на вращательное движение спутника используется модель 
М.А. Лаврентьева. В этой модели спутник состоит из несущего твердого 
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тела (оболочки) и внутреннего однородного шарообразного ядра, при относи-
тельных перемещениях которого возникает демпфирующий момент сил. Эта 
модель может быть использована для исследования эволюции вращательного 
движения планет в гравитационном поле Солнца [6].

Ранее [8] были исследованы пространственные резонансные вращения 
“сплюснутого” вдоль оси симметрии динамически симметричного спутника 
с шаровым демпфером на круговой орбите. В данной работе исследуются про-
странственные резонансные вращения трехосного (несимметричного) спут-
ника на круговой орбите.

2. Уравнения движения трехосного спутника на эллиптической орбите. Ана-
лиз пространственных резонансных движений трехосного спутника с шаро-
вым демпфером будем проводить по той же схеме, что и для симметричного 
спутника [8].

Сначала запишем уравнения вращательного движения спутника в безраз-
мерных переменных для общего случая, когда центр масс спутника движется 
по эллиптической орбите.

Обозначим через Oe1e2e3 связанный с оболочкой базис главных централь-
ных осей инерции всего спутника, через J = diag(A, B, C) – главный централь-
ный тензор инерции всего спутника, через I – момент инерции демпфера от-
носительно его центральной оси, а через R – радиус-вектор, соединяющий 
центр притяжения с центром масс спутника. Тогда действующий на спутник 
момент гравитационных сил выразится формулой [1]:

	 ,
3

3
g

k
RR

= × =
R

M r Jr r ,	 (2.1)

где k = GM – постоянная тяготения, G – гравитационная постоянная, M – 
масса притягивающего тела, r – единичный вектор.

Оси базиса Кенига O i1i2i3 выберем так, чтобы ось i3 совпадала с нормалью 
к плоскости орбиты, а ось i1 – с направлением на перицентр орбиты. Тогда 
вектор r будет выражаться формулой:
	 cos sin ,1 2= n + nr i i 	 (2.2)
где n – истинная аномалия – угол между векторами r и i1 (рис. 1a).

В рамках линейной модели вязкого трения действующий на демпфер мо-
мент диссипативных сил пропорционален относительной угловой скорости 
демпфера и определяется формулой:
	 ( ),d I= −m −M W w 	 (2.3)
где w – вектор абсолютной угловой скорости оболочки, W – вектор абсолют-
ной угловой скорости демпфера, m~ – коэффициент вязкого трения между обо-
лочкой и демпфером.

В качестве безразмерного времени возьмем среднюю аномалию t = w0t, где 
w0 – средняя угловая скорость орбитального базиса, определяемая формулой:
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,	 (2.4)
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где p – фокальный параметр орбиты спутника, e – эксцентриситет.
Введем переменные U, W, L и K согласно формулам:

	 ,
0

=
w

U
w

 
0

−
=

w
W

W w
,  

	 =L JU , = IK W .	 (2.5)
Здесь U – безразмерная угловая скорость оболочки, W – безразмерная отно-
сительная угловая скорость демпфера, L – приведенный кинетический мо-
мент переносного движения спутника, K – приведенный кинетический мо-
мент относительного движения демпфера.

Применяя теорему об изменении кинетического момента для всего спут-
ника и для демпфера, получим следующую систему динамических уравнений 
вращательного движения спутника:
	 + =′ ′ gIL W m ,	 (2.6)

	 + = −m′ ′( )I IW U W .	 (2.7)
Здесь и далее штрихом обозначается производная по безразмерному времени 
t, m = m~ /w0 – безразмерный коэффициент вязкого трения, а mg – приведенный 
гравитационный момент, который на основании формул (2.1), (2.4) и уравне-
ния конических сечений R = p/(1 + e cos n) выражается формулой:

	
+ n 
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e
f f

e
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Уравнения (2.6), (2.7) дополняются до замкнутой системы кинематически-
ми уравнениями, описывающими движение оболочки:
	 , 1, 2,3,k k k′ = × =e U e 	 (2.9)
и уравнением для истинной аномалии:
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Рис. 1. Переменные Белецкого–Черноусько.
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( cos )

( )
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n =′
−
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.	 (2.10)

Введем безразмерные параметры e2, e3 и g, характеризующие геометрию 
масс спутника с демпфером, следующими формулами:

	
−

e =
−2

B A
A I

, 
−

e =
−3

С A
A I

, g =
−
I

A I
.	 (2.11)

В рассматриваемой задаче вектор L выражается через вектор U формулой:
	 = + − ⋅ + − ⋅2 2 3 3( )( ) ( )( )A B A C AL U U e e U e e .	 (2.12)

Дифференцируя эту формулу по t и учитывая уравнения (2.9), будем иметь:

	
2 2 2 2

3 3 3 3

( )[( ) ( ) ]

( )[( ) ( ) ].

A B A

C A

′ ′ ′= + − ⋅ + ⋅ × +
′+ − ⋅ + ⋅ ×

L U U e e U e U e

U e e U e U e

Подставляя это выражение в уравнения (2.6) и (2.7), получим на основании 
формул (2.11) следующие уравнения:

	 [ ]
3

2

( ) ,k k k k k
k

g
=

′ = + m g − e ⋅ × + =∑U m W U e U e e M 	 (2.13)

	 [ ]( ) ( ) .
3

2

1 k k k k k
k

g
=

′ = − − m + g + e ⋅ × + = − − m∑W m W U e U e e M W 	 (2.14)

Здесь m – безразмерный гравитационный момент, определяемый формулой:

	
×

= = n
− −

3 ( )
g

f
A I A I

m r Jr
m .	 (2.15)

Члены gk в правой части уравнений (2.13) и (2.14) находятся проецирова-
нием уравнения (2.13) на оси e2, e3 и выражаются формулами:
	 ( ) [ ( )( )] ( )= ⋅ = ⋅ + m g ⋅ + e ⋅ ⋅ + e′2 2 2 2 3 3 1 21g U e m e W e U e U e ,	 (2.16)

	 = ⋅ = ⋅ + m g ⋅ − e ⋅ ⋅ + e′3 3 3 3 2 2 1 3( ) [ ( )( )] (1 )g U e m e W e U e U e .	 (2.17)
Ниже будем рассматривать спутник, близкий к сферически симметрично-

му, т.е. положим
	

,
sup
=

e = e 

2 3
1k

k
.	 (2.18)

Безразмерный гравитационный момент m (2.15) при учете формул (2.11) 
можно выразить следующей формулой:
	 = e − e − e + e3 2 2 3 1 3 1 3 2 2 1 2 3( )r r r r r rm e e e ,	 (2.19)
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где rk = r · ek – проекции единичного вектора r (2.2) на оси связанного с обо-
лочкой базиса Oe1e2e3 главных осей инерции спутника. Из этой формулы сле-
дует, что вектор m является ограниченной функцией малого параметра e.

В свою очередь, на основании уравнения (2.14) для производной по t от 
функции W 2/2 получим следующее уравнение:

	 [ ]

( ) ( )

( ) .

2
2

3

2

1
2

k k k k k
k

W
W

g
=

′ 
′= ⋅ = −m + g − ⋅ +  

 
 

+ ⋅ e ⋅ × +  
 
∑

W W m W

W U e U e e 	 (2.20)

Из него следует, что при m(1 + g) >> e движение спутника сравнительно бы-
стро приходит в режим медленной эволюции, в процессе которой вектор W 
тоже будет ограниченной функцией малого параметра e.

Таким образом, в режиме медленной эволюции будут выполняться 
условия:
	 = e( )Om , = e( )OW , = e( )OM ,	 (2.21)
в силу которых функции gk (2.16) и (2.17) будут ограниченными функциями 
малого параметра e. А поскольку в выражение для вектора M (2.13) входят 
произведения ekgk, то этот вектор можно описать следующей формулой:

	
=

= + m g − e ⋅ × + e∑
3

2

2

( ) ( )k k k
k

OM m W U e U e .	 (2.22)

3. Уравнения движения трехосного спутника с демпфером в переменных Бе-
лецкого–Черноусько. При решении различных задач о вращательном движе-
нии спутника важное значение имеет выбор переменных.

В работе [5] для исследования нерезонансных движений трехосного спут-
ника с шаровым демпфером на круговой орбите использовались уравнения, 
записанные в переменных w1, w2, w3, u1, u2, u3, y, q, j, где uk и wk – проекции 
векторов U и W на оси базиса Oe1e2e3, а y, q, j – углы Эйлера, задающие ори-
ентацию базиса Oe1e2e3 относительно базиса Кенига Oi1i2i3. На основе этих 
уравнений были получены осредненные уравнения второго приближения, 
адекватно описывающие эволюцию переменных U = u3 и q в нерезонансных 
случаях, когда значения U лежат вне малых окрестностей точек U * = 0, U * = 1, 
U * = 2. Но для анализа резонансных вращений спутника уравнения в указан-
ных переменных оказываются непригодными. Поэтому, как и в задаче для 
динамически симметричного спутника [8], будем использовать уравнения, 
в которых состояние оболочки спутника описывается переменными Белец-
кого–Черноусько [1].

В переменных Белецкого–Черноусько положение вектора U относительно 
базиса Кенига Oi1i2i3 задается величиной U, углом нутации r и углом прецес-
сии s (рис. 1a), а положение связанного с оболочкой базиса главных цен-
тральных осей инерции спутника Oe1e2e3 относительно базиса Os1s2s3 задается 
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углами Эйлера q, y и j (рис. 1б). В качестве остальных переменных использу-
ются проекции W1, W2, W3 вектора W на оси базиса Os1s2s3.

Согласно рис. 1а, все возможные состояния системы можно описать, 
рассматривая значения переменных U и r в интервалах
	 ≥ 0U , ≤ r ≤ p0 .	 (3.1)

Базис Os1s2s3 вращается относительно базиса Кенига O i1i2i3 с угловой 
скоростью
	 3 2 3 1 2( cos sin )s = s + r = s r − r + r′ ′ ′ ′i s s s sW .
Записывая уравнение (2.13) в проекциях на оси базиса Os1s2s3

	 3 3 3 2 1( sin )sU U U U= + × = + s r + r =′ ′ ′ ′ ′U s s s s s MW ,
получим следующие уравнения, описывающие поведение переменных r, s и 
U:

	
,

( sin ) ,
.

1

2

3

M U

M U

U M

′r =
′s = r

′ =
	 (3.2)

Здесь Mk – проекции вектора M (2.22) на оси базиса Os1s2s3. При учете урав-
нений (3.2) вектор Ws выразится формулой:

	
+ r −

= 1 2 2 3 1( ctg )
s

M M
U

s s s
Ω .	 (3.3)

Уравнение (2.14) в осях базиса Os1s2s3 записывается с точностью до O(e2) 
в виде:

	
=

+ × = −m + g − + e ⋅ ×′ ∑
3

2

(1 ) ( )s s k k k
k

W W W m U e U eΩ .

Здесь Ws′ – вектор-столбец, составленный из производных , ,1 2 3W W W′ ′ ′  от 
проекций вектора W на оси базиса Os1s2s3. Поскольку из формул (2.21) следу-
ет, что |Ws × W| = O(e2), то в проекциях на оси базиса Os1s2s3 уравнение (2.14) 
запишется с точностью до O(e2) в виде следующей системы:

	
1 1 1 1

2 2 2 2

3 3 3

(1 ) ,

(1 ) ,

(1 ) .

W W m f

W W m f

W W m

′ = −m + g − +
′ = −m + g − +

′ = −m + g −

	 (3.4)

Здесь mk – проекции вектора m (2.15) на оси базиса Os1s2s3, а fk – проекции на 
оси базиса Os1s2s3 вектора

	
3

2

( ) cos sin ,k k k
k =

= e ⋅ × = y + y∑f U e U e A B 	 (3.5)
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в котором компоненты векторов A и B выражаются следующими формулами:

( cos )sin , sin sin , .
2 2

2
1 2 3 2 1 2 2 3 32 2 0

2 2
U U

A B B A A B= = e − e j q = − = e q j = = 	(3.6)

Получим уравнения, описывающие поведение углов Эйлера в рассматри-
ваемой задаче. Угловая скорость оболочки спутника определяется формулой:
	 ,3 s sU= = +U s Ω w 	 (3.7)
где Ws выражается формулой (3.3), а ws – угловая скорость базиса Oe1e2e3 от-
носительно базиса Os1s2s3, определяемая формулой:
	 ( cos sin ) ( cos ( sin cos )sin ).3 1 2 3 1 2s ′ ′ ′= y + q y + y + j q + y − y qs s s s s sw

Проецируя равенство (3.7) на оси базиса Os1s2s3, получим следующую си-
стему скалярных уравнений, описывающую поведение углов Эйлера:

	
( cos sin ) ,

( sin cos ) ( sin ) ,
ctg ( sin cos ) ctg .

2 1

2 1

2 1 2

M M U

M M U

U M M U M U

′q = y − y
′j = y + y q

′y = − q y + y − r

	 (3.8)

Уравнения (3.2), (3.4), (3.8) в сочетании с уравнением (2.10) образуют зам-
кнутую систему относительно переменных r, s, U, y, q, j, W1, W2, W3 и n. Эти 
уравнения по форме полностью идентичны соответствующим уравнениям ра-
боты [8] для симметричного спутника. Отличаются эти уравнения от уравне-
ний работы [8] только выражениями для проекций Mk вектора M (2.22).

Безразмерному гравитационному моменту m (2.15) соответствует безраз-
мерная силовая функция

	 ( ) ( )( ),2 2
2 2 3 3

3 3
2 2

T

G f f r r
A I

= − n = − n e + e
−

r Jr 	 (3.9)

через которую вектор m выражается формулой:

	 .G∂
= ×

∂
m r

r
	 (3.10)

Согласно [1] проекции вектора m (2.15) на оси базиса Os1s2s3 могут быть 
вычислены через функцию (3.9), выраженную через переменные Белецкого–
Черноусько, по формулам:

	
∂ ∂

= r −
∂y r ∂s1

1
ctg

sin
G G

m , 
∂

=
∂r2
G

m , 
∂

=
∂y3

G
m .	 (3.11)

Входящие в выражение для силовой функции (3.9) проекции r2 и r3 еди-
ничного вектора r (2.2) на оси связанного с оболочкой базиса Oe1e2e3 выра-
жаются через переменные Белецкого–Черноусько следующими формулами:
  (sin cos sin cos sin )cos( ) sin cos sin( ),3 3r = ⋅ = q r y + q r n − s − q y n − sr e 	(3.12)
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[ ]

[ ]
sin sin cos cos (sin cos cos cos sin )

cos( ) cos cos cos sin sin sin( ).
2 2r = ⋅ = q r j − r j y + q j y ×

× n − s + q j y − j y n − s

r e
	

(3.13)

4. Резонансные вращения трехосного спутника с шаровым демпфером на кру-
говой орбите. Для случая круговой орбиты вращательное движение спутника 
описывается уравнениями (3.2), (3.4), (3.8), где n = t, f(n) = 1.

Ниже при исследовании резонансных движений трехосного спутника бу-
дем, как и ранее [8], использовать метод осреднения Н.Н. Боголюбова [9-10] и 
теорему А.Н. Тихонова [11] об условиях редукции в дифференциальных урав-
нениях с малым параметром.

Для построения осредненных уравнений необходимо выяснить сначала, 
какие из переменных системы являются “быстрыми”, а какие “медленными”.

Из уравнений (3.2), (3.4), (3.8) при учете формул (2.21) следует, что при 
U  >> e и m(1 + g)  >> e в режиме медленной эволюции переменные t и y будут 
“быстрыми”, а остальные переменные – “медленными” (скорость изменения 
“медленных” переменных будет ограниченной функцией e).

Согласно формулам (3.9), (3.11)–(3.13) быстрые переменные входят в пра-
вые части уравнений только через гармонические функции вида:
	 ( ) ( )sin ( ) , cos ( ) ; , , ,2 2 0 1 2m m my ± s − t y ± s − t =  sin , cos ; , .1 2m m my y =

Поэтому резонансным вращениям спутника могут соответствовать толь-
ко движения, для которых выполняется одно из следующих резонансных 
соотношений:
	 ; , , ,2 1 0 0 1 2m m′ ′y ± s − = = , .0′y =

Здесь среднее по t обозначено угловыми скобками. При этом для значений 
U  >> e и m(1 + g)  >> e из записанных выше резонансных соотношений могут вы-
полняться только следующие два:
	 y + s − =′ ′2 2 0  ⇒ = + e2 ( )U O ,	 (4.1)

	 y + s − =′ ′ 1 0  ⇒ = + e1 ( )U O .	 (4.2)
Движения спутника, для которых выполняется резонансное соотношение 

(4.1), условимся называть резонансными вращениями 2 : 1. Для этих вращений 
величина угловой скорости спутника с точностью до O(e) совпадает с удвоен-
ной угловой скоростью орбитального базиса.

Движения спутника, удовлетворяющие резонансному соотношению (4.2), 
будем называть резонансными вращениями 1 : 1. Для них величина угловой 
скорости спутника с точностью до O(e) равна угловой скорости орбитального 
базиса.

Наличие пространственных резонансных вращений 2 : 1 и 1 : 1 на круго-
вой орбите подтверждается результатами численного интегрирования точных 
уравнений движения трехосного спутника с шаровым демпфером.

На рис. 2 приведены построенные по результатам численного интегриро-
вания точных уравнений фазовые траектории вращательного движения спут-
ника с демпфером в плоскости переменных UX, UZ для следующих значений 
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параметров: m = 5, g = 1, e2 = 0.05, e3 = 0.1. Здесь UX – проекция угловой скоро-
сти спутника на плоскость орбиты, а UZ – проекция угловой скорости спут-
ника на нормаль к плоскости орбиты. На рис. 2a изображены фазовые траек-
тории для начальных условий из области U  > 2, а на рис. 2б – из области U < 2. 
Резонансным вращениям 2 : 1 соответствует дуга окружности радиуса U * = 2, 
а резонансным вращениям 1 : 1 – дуга окружности радиуса U * = 1. Стрелками 
показано направление эволюции.

Заметим, что для трехосного спутника с демпфером на круговой орбите 
установившимися движениями являются только положения равновесия от-
носительно орбитального базиса (U * = 1, r* = 0) [5]. Поэтому наблюдаемые 
пространственные резонансные вращения 2 : 1 и 1 : 1 представляют собой 
эволюционирующие процессы, в которых среднее значение угла нутации r 
изменяется с течением времени, причем ось вращения спутника монотонно 
эволюционирует в сторону нормали к плоскости орбиты.

Ниже проводится аналитическое исследование условий существования и 
устойчивости резонансных вращений 2 : 1 и 1 : 1 трехосного спутника с демп-
фером на круговой орбите.

Резонансные вращения 2 : 1. Для анализа резонансных вращений 2 : 1 введем 
новую переменную X формулой:
	 = y − t − s2( )X .	 (4.3)

Согласно (3.2) и (3.8) поведение переменной X описывается уравнением:
	 = − − q y + y + − r r′ 2 1 22 ctg ( sin cos ) (2 cos ) ( sin )X U M M U M U .	(4.4)

Резонансным вращениям 2 : 1 будут соответствовать такие движения спут-
ника, для которых среднее по времени t значение переменной X остается 
неизменным. Для этих движений будет иметь место такая синхронизация 
между вращательным движением спутника и движением его центра масс, что 

(a)
6

4

2

–2

–4

1
0

0 1 2 3 4 5Ux

Uz

(б)
2

–2

–1

0

1

0 1 2Ux

Uz

Рис. 2. Фазовые траектории.
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за один оборот центра масс спутника относительно базиса Os1s2s3 базис Oe1e2e3 
будет совершать ровно два оборота вокруг вектора угловой скорости U.

Из формул (3.9), (3.11)–(3.13) следует, что время t входит в правые части 
уравнений (3.2), (3.4), (3.8) только через функции sin(t – s) и cos(t – s). В свою 
очередь, из формулы (4.3) имеем:
	 t − s = y −( ) 2X .	 (4.5)

Подставляя это выражение в правые части уравнений (3.2), (3.4), (3.8), по-
лучим автономную систему в переменных r, U, W1, W2, W3, q, X, y, j. Далее 
проведем осреднение полученных уравнений по “быстрой” переменной y, а 
интересующие нас резонансные вращения, как и для симметричного спутни-
ка [8], будем искать среди стационарных по переменным U, W1, W2, W3, q, X, j 
решений (положений равновесия) осредненной системы при фиксированном 
значении переменной r.

После осреднения системы (3.2), (3.4), (3.8) по “быстрой” переменной y 
получим следующие уравнения:
	 r = + mg′ 1 1( )m W U , s = + mg r′ 2 2( ) ( sin )m W U ,	 (4.6)

	 = −m + g − + e′ 2
1 1 1(1 ) ( )W W m O , = −m + g − + e′ 2

2 2 2(1 ) ( )W W m O ,	 (4.7)

	 = −m + g − + e′ 2
3 3 3(1 ) ( )W W m O , = mg + + e′ 2

3 3 ( )U W m O .	 (4.8)
Здесь чертой сверху обозначены вычисленные по формулам (3.9), (3.11)–

(3.13) и осредненные по y проекции вектора m (2.15) на оси базиса Os1s2s3:

( cos )( cos ) cos sin ( cos ) sin sin sin ,2
1 3 2 2

3
1 2 2 2

8
m X X = + r − r q e − e j + e q j  	 (4.9)

	
sin ( cos )( cos ) cos

(cos cos ) sin sin ( cos ) cos sin sin ,

2 2
2 3 2 2

2
2 3 2

3
2 1 3 2

8
3

2 2 2
8

m

X X

 = r − q e − e j − e j + 

 + r + r q e j − e + e q j 

	
(4.10)

    sin ( cos ) cos sin ( cos ) sin sin sin .2
3 3 2 2

3
1 2 2

8
m X X = − r + r q e − e j + e q j  	(4.11)

Для вычисления средних по y от правых частей уравнений (3.8) с точно-
стью до O(e2) воспользуемся формулами работы [8]:

( )( )cos sin ( ) ,
( ) ( )

2 2
1 2

2 1 2 12 2 2 2 2 2

1 1
2 1 1

UU
M M

U U

 mg a + b+ m + g
y − y = − a − b +  + m + g + m + g 

	 (4.12)

( )( )cos sin ( ) .
( ) ( )

2 2
1 2

1 2 1 22 2 2 2 2 2

1 1
2 1 1

UU
M M

U U

 mg b − a+ m + g
y + y = − a + b +  + m + g + m + g 

	 (4.13)

Здесь среднее по y обозначено угловыми скобками, а ak и bk – компоненты 
векторов a и b, определяемых формулами:
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	 ,= −A aa  ,= −B bb 	 (4.14)
где векторы A и B выражаются формулами (3.6), а векторы a и b – множители 
с номером j = 1 в вычисленном на основе формул (3.9), (3.11)–(3.13) и (4.5) 
выражении для вектора m:

	 ( , , , ) cos ( , , , ) sin .
3

0
j j

j

X j X j
=

= r q j y + r q j y∑m a b

После учета формул (4.12) и (4.13) осредненные по y уравнения (3.8) запи-
шутся с точностью до O(e2) в следующем виде:

	
( cos ) ( ) ( sin )

ctg ( )( ) ( ) ( ),
( ) ( )

2 2

2 2
2

2 1 1 22 2 2 2 2 2

2 2

1
2 1 1

X U m W U

U U
O

U U U

′ = − + − r + mg r −

 q mg + m + g
− a − b − a + b + e  + m + g + m + g 

	
(4.15)

  ( ) ( ) ( ) ( ),
( ) ( )

2 2
2

2 1 1 22 2 2 2 2 2

1 1
2 1 1

U U
O

U U U

 + m + g mg′q = − a − b + a + b + e  + m + g + m + g 
	 (4.16)

( )( ) ( ) ( ).
sin ( ) ( )

2 2
2

2 1 1 22 2 2 2 2 2

1 1
2 1 1

U U
O

U U U

 mg + m + g′j = a − b − a + b + e  q + m + g + m + g 
	 (4.17)

Множители a2 – b1 и a1 – b2 в правых частях этих уравнений, вычисленные 
на основе формул (4.14) и (3.6), выражаются следующими формулами:

	

( )

cos sin ( cos ) cos ( cos ) cos

sin sin cos cos sin ( cos )sin ,

2 2
2 1 3 2 2

2 2
2

3
1 2

2
3

2 4 3 3 1 1
4

X

U X

 a − b = r + r q e − e j + e j − 

 − e j q + r − + q r + r 

	

(4.18)

	 ( )sin ( cos ) cos

sin ( cos ) cos sin ( cos ) cos sin cos .

2 2 2
1 2 3 2

2
3 2 2

3
2 4 3 3 1

4
3

1 2 2 2
4

U

X X

a + b = q e − e j + r − +

 + r + r q e − e j − e q j 

	

(4.19)

Если значения угла нутации удовлетворяют условию
	 r + r esin (1 cos )  ,	 (4.20)
то система уравнений (4.7), (4.8), (4.15)–(4.17) допускает стационарные ре-
шения (положения равновесия) по переменным W1, W2, W3, U, q, X, j при 
фиксированном r, которые описываются следующими формулами:

	 *cos ,0X =  
*

*
2 2

2sin (1 cos )sin
tg 2 ,

4 3 3cos 1

X

U

r + r
q = −

+ r −
 *sin .2 0j = 	 (4.21)

	 * ( ),2U O= + e  * ( ),2
1W O= e  * ( ),2

3W O= e  * ( ).2W O= e 	 (4.22)
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В формулах (4.21) стационарные значения переменных X, q и j выписаны 
с точностью до O(e).

Анализ корней характеристического уравнения линеаризованной системы 
(4.7), (4.8), (4.15)–(4.17) показал (ввиду громоздкости здесь не приводится), 
что при e3 > e2 > 0 асимптотически устойчивыми являются только те из реше-
ний (4.21), (4.22), для которых

	 * ,2X = −p   * *
2

2sin (1 cos )
tg 2 ; sin 2 0,

13 3 3cos

r + r
q = q >

+ r
  * .2j = ±p 	 (4.23)

Для этих решений q* – угол между вектором угловой скорости U и осью e3  
наибольшего момента инерции спутника, а вектор U лежит в плоскости Oe1e3 
осей наибольшего и наименьшего моментов инерции спутника.

Значения фазовых переменных W1, W2, W3, U, X, q, j на стационарных 
решениях (4.21), (4.22) являются функциями угла нутации r. Как показыва-
ют вычисления, если подставить эти решения в первое из уравнений (4.6), 
получим уравнение r′ = f(r), в котором f(r) будет ограниченной функцией e2. 
Отсюда, поскольку асимптотическая устойчивость решений (4.22), (4.23) уста-
новлена из осредненных уравнений первого приближения по e, следует, что 
в окрестности стационарных решений переменные W1, W2, W3, U, X, q, j будут 
“быстрыми” по сравнению с переменной r. Следовательно, применима теоре-
ма А.Н. Тихонова [11], согласно которой систему дифференциальных уравне-
ний (4.7), (4.8), (4.15)–(4.17) можно заменить системой алгебраических урав-
нений (4.22), (4.23) и решать их совместно с дифференциальным уравнением 
r′ = f(r). Полученное при этом решение будет асимптотически устойчивым по 
переменным W1, W2, W3, U, X, q, j, а по теореме Н.Н. Боголюбова [9, 10] этому 
решению осредненной системы будет соответствовать асимптотически устой-
чивое условно-периодические решение исходной неавтономной системы.

Таким образом, асимптотически устойчивые резонансные вращения 2 : 1 
в рассматриваемой задаче представляют собой эволюционирующий режим 
движения спутника, в котором угол нутации r медленно меняется с течением 
времени.

Обратим внимание, что согласно формулам (4.23) поведение переменных 
X и q на асимптотически устойчивых резонансных вращениях 2 :1 трехос-
ного спутника в точности совпадает с поведением этих переменных на резо-
нансных вращениях 2 : 1 динамически симметричного спутника, “сплюснуто-
го” вдоль оси симметрии [8]. При этом интервал значений угла нутации r, в 
котором существуют резонансные вращения (4.21), (4.22) трехосного спутни-
ка, определяется аналогичной [8] формулой:

	 r < r < p − r1 2 , где r e1  , r e1 3
2  .	 (4.24)

Из этой формулы следует, что нет резонансных вращений 2 : 1 для значе-
ний r, близких к нулю, и для значений r, близких к p, причем r2 >> r1.

На рис. 3a–г показаны графики типичного поведения переменных U, r, 
X, q на резонансных вращениях 2 : 1, полученные по результатам численного 
интегрирования точных уравнений движения (3.2), (3.4), (3.8). Здесь N – чис-
ло оборотов центра масс спутника вокруг притягивающего центра, а q – угол 
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между вектором угловой скорости спутника U и осью e3 наибольшего момента 
инерции. Эти графики получены для следующих значений параметров:
	 g = m = e = e =2 31, 1, 0.03, 0.06 .

В данном примере, как следует из графиков, для начальных условий 
U(0) = 2.2, r(0) = 2.5 захват в резонансное вращение 2 : 1 происходит при 
N  ≈ 800 (r ≈ 2.6), а заканчивается это резонансное вращение при N  ≈ 6400, 
когда угол нутации достигает значения r1 ≈ 0.1. При N  ≈ 6600 спутник перехо-
дит в режим плоского нерезонансного вращения вокруг оси e3 наибольшего 
момента инерции, совпадающей с нормалью к плоскости орбиты (r = 0, q = 0), 
а при N  ≈ 7500 приходит в положение равновесия относительно орбитального 
базиса (r = 0, U = 1).

Поведение переменных U, X = y – 2(t – s), q на рис. 3a, в, г полностью со-
гласуется с формулами (4.23) и (4.24), а поведение угла нутации r на рис. 3б 
свидетельствует о том, что на резонансных вращениях 2 : 1 ось вращения спут-
ника монотонно эволюционирует в сторону нормали к плоскости орбиты.

Резонансные вращения 1 : 1. Для исследования резонансных вращений 1 : 1 
введем новую переменную X формулой:

(a)

2
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1

0 2000 4000 6000 8000
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U
(б)

2
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0 2000 4000 6000 8000
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0 2000 4000 6000 8000
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s X
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1
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0
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Рис. 3. Резонансные вращения 2 : 1.
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	 = y − t − s( )X .	 (4.25)
Резонансным вращениям 1 : 1 будут отвечать такие движения спутника, для 

которых значения переменной X будут в среднем оставаться неизменными. 
При этом вращательное движение спутника и движение его центра масс будут 
синхронизированы так, что за один оборот центра масс спутника относитель-
но базиса Os1s2s3 базис Oe1e2e3 совершает ровно один оборот вокруг вектора 
угловой скорости U.

Согласно (3.2) и (3.8) поведение переменной X описывается уравнением:
	 ctg ( cos sin ) ( cos ) ( sin )= − − q y + y + − r r′ 1 2 21 1X U M M U M U .	 (4.26)

Исключив из уравнений время t с помощью замены t – s = y – X, получим 
автономную систему в переменных r, U, W1, W2, W3, q, X, y, j. После осред-
нения правых частей уравнений этой системы по “быстрой” переменной y, 
получим уравнения, которые по форме будут полностью совпадать с уравне-
ниями системы (4.6)–(4.8), (4.15)–(4.17), за исключением уравнения (4.15), 
вместо которого в рассматриваемом случае получим следующее уравнение:

	
( cos ) ( ) ( sin )

ctg ( ) ( ) ( ) .
( ) ( )

2 2

2 2

1 2 2 12 2 2 2 2 2

1 1

1
2 1 1

X U m W U

U U
U U U

′ = − + − r + mg r +

 q + m + g mg
+ a + b − a − b  + m + g + m + g 

	
(4.27)

В рассматриваемом случае средние для проекций вектора m (2.15) на оси 
базиса Os1s2s3 и множители a2 – b1, a2 + b1 в правых частях уравнений (4.16), 
(4.17) и (4.27) будут выражаться следующими формулами:

	
( )

]

sin ( cos ) sin sin ( cos ) cos

sin cos cos ,

2 2
1 3 2 2

2

3
1 2 2

8
2 2

m X

X

= r + r q e − e j + e j +

+ e j q

	
( )

sin ( cos )( cos ) cos

sin ( cos ) ( cos )sin cos cos sin cos sin ,

2 2
2 3 2 2

2 2
2 3 2 2

3
2 1 3 2

8
3

1 2 2 2 2
8

m

X X

 = r − q e − e j − e j + 

 + r + r e j − e q − e j + e j q 

( )( cos ) sin sin ( cos ) cos sin cos cos ,2 2 2
3 3 2 2 2

3
1 2 2 2 2

8
m X X = − + r q e − e j + e j + e j q 

	 ( cos )( cos ) sin sin cos sin sin ,
2

2 2 2
2 1 3 2 2

3 3 4
1 2 2 3 1 2

8 4 3
U

X
 

a − b = e − e j + r q − e + r − j q  
 

	 sin ( cos ) cos cos ( cos )

( cos ) sin sin sin .

2
2 2 2

1 2 3 2

2
2

3 4 1
2 3 1 2 1

4 3 2
3

1 2 2
8

U
X

X

 
a + b = q e − e j + r − − + r − 

 

− e + r j q
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Если значения угла нутации удовлетворяют условию

	 ( cos ) ,21 + r e 	 (4.28)
то система уравнений (4.7), (4.8), (4.16), (4.17), (4.27) допускает стационарные 
решения (положения равновесия) по переменным W1, W2, W3, U, q, X, j при 
фиксированном r, которые описываются следующими формулами:
	 *sin ,2 0X =  *sin ,2 0j =  *cos 0q =  *( )2q = ±p ,	 (4.29)

	 * ( ),1U O= + e  * ( ),2
1W O= e  * ( ),2

3W O= e  * ( ).2W O= e 	 (4.30) 
В формулах (4.29) стационарные значения переменных X, q и j выписаны 

с точностью до O(e).
Матрица системы (4.7), (4.8), (4.16), (4.17), (4.27), линеаризованной 

в окрестности решений (4.29), (4.30), записывается в виде:
( )

( )
( )

,

15

35

35

52

66 67

76 77

1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

f

f
f

f
f f
f f

−m + g 
 − m + g 

− m + g 
 = mg −
 
 
 
  

A 	 (4.31)

где пронумерованные элементы матрицы выражаются следующими 
формулами:

	 = − r + r e − e j2 * *
15 3 2

3
sin (1 cos )( sin )cos 2

4
f X ,

	 = + r e − e j2 2 * *
35 3 2

3
(1 cos ) ( sin )cos 2

4
f X ,

	 = mg − r r52 (1 cos ) sinf ,

	
mg + r − + r

= e − e j
+ m + g

2 * 2
2 *

66 3 2 2 2

2 18cos 3cos 2 (1 cos )
( cos )

8 1 (1 )

X
f ,

	
+ m + g + r

= e j q
+ m + g

2 2
* *

67 2 2 2

1 (1 ) 2 18cos
cos 2 sin

8 1 (1 )
f ,

	
+ m + g + r − + r

= e − e j q
+ m + g

2 2 * 2
2 * *

76 3 2 2 2

1 (1 ) 2 18cos 3cos 2 (1 cos )
( cos )sin

8 1 (1 )

X
f ,

	
mg + r

= − e j
+ m + g

2
*

77 2 2 2

2 18cos
cos 2

8 1 (1 )
f .

Для матрицы (4.31) характеристический полином, в коэффициентах кото-
рого учтены только главные члены разложения по e, выражается формулой:
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( ) ( )
( )

( ) ( ) ( )

( ) .

2 3 2
35 35

2
66 77 66 77 67 76

1 1f f f

f f f f f f

λ = m + g + λ λ + λ m + g + λ + m ×

× λ − + λ + −

По критерию Рауса–Гурвица асимптотически устойчивыми будут те из 
стационарных решений (4.29), для которых выполняются неравенства:
	 >35 0f , + <66 77 0f f , − >66 77 67 76 0f f f f .	 (4.32)

Если же хотя бы одно из неравенств (4.32) принимает обратный знак, то 
соответствующее стационарное решение неустойчиво.

На основании выписанных выше формул неравенства (4.32) запишутся в 
следующем виде:
	 **( sin )cos ,2

3 2 2 0Xe − e j > 	 (4.33)

	 ** *( cos )cos cos cos ( cos ) ,2 2 2
3 2 2 2 18 3 2 1 0X e − e j j + r − + r <  	 (4.34)

	

**

*

( cos ) cos cos ( cos )

cos ( cos ) .

2 2 2
3 2

2
2

2 18 3 2 1

2 2 18 0

X e − e j + r − + r − 

− e j + r < 	 (4.35)

Рассмотрим сначала случай e3 > e2 > 0, т.е. когда e3 – ось наибольшего мо-
мента инерции спутника, а e2 – ось среднего момента инерции. В этом случае 
из условия (4.33) получим cos 2X * = 1 (X * = 0, p), а остальные неравенства при-
мут следующий вид:

	 2 *(15cos 6cos 1)cos 2 0,r − r − j <

	 * *( cos )( cos cos ) cos ( cos ) .2 2 2
3 2 215 6 1 2 2 18 0e − e j r − r − − e j + r <

Оба эти неравенства выполняются только для решений cos 2j* = 1 (j* = 0, p) 
и только в следующем интервале значений угла нутации:

	 cos cos215 6 1 0r − r − <  ; . , . .1 2 1 21 0 1 7⇒ r < r < r r ≈ r ≈ 	 (4.36)
Отметим, что в рассмотренном случае e3 > e2 > 0 решениям q* = ±p/2, j* = 0, p  

соответствуют вращения спутника вокруг оси e2 среднего момента инерции.
Вопрос о существовании асимптотически устойчивых резонансных вра-

щений 1 : 1 за пределами интервала (4.36) решается рассмотрением случая 
e2 > e3 > 0, когда e2 – ось наибольшего момента инерции спутника, а e3 – ось 
среднего момента инерции. В этом случае для решений j* = 0, p из условия 
(4.33) следует cos 2X * = 1, а остальные два неравенства принимают вид:

	 ( )( cos cos ) ,2
3 2 15 6 1 0e − e r − r − <

	 ( )( cos cos ) ( cos ) .2 2
3 2 215 6 1 2 18 0e − e r − r − − e + r <

Оба эти неравенства выполняются только для следующих значений угла 
нутации:
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	 r − r − >215cos 6cos 1 0  ⇒ r <r r > r r ≈ r ≈1 2 1 2, ; 1.0, 1.7 .	 (4.37)
В данном случае e2 > e3 > 0 решениям q* = ±p/2, j* = ±p/2, j* = 0, p соответ-

ствуют вращения спутника вокруг оси e2 наибольшего момента инерции.
Таким образом, в интервале (4.36) значений угла нутации асимптотиче-

ски устойчивые резонансные движения 1 : 1 для трехосного спутника пред-
ставляют собой вращения вокруг оси среднего момента инерции, а вне этого 
интервала, т.е. для значений r (4.37), – вращения вокруг оси наибольшего 
момента инерции.

Интервал значений угла нутации, где существуют стационарные решения 
(4.29), (4.30), соответствующие резонансным вращениям трехосного спутни-
ка, описывается формулой:

	 *≤ r < p − r0 , где r e* 1/4
 ,	 (4.38)

которая аналогична формуле для интервала значений r, где существуют ре-
зонансные вращения 1 : 1 для динамически симметричного спутника [8]. Из 
этой формулы следует, что нет резонансных вращений 1 : 1 для значений r, 
близких к p, т.е. для вращений спутника, близких к “обратным” вращениям.
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Рис. 4. Резонансные вращения 1 : 1.
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На рис. 4 показаны графики типичного поведения переменных U, r, X, q на 
резонансных вращениях 1 : 1, полученные по результатам численного интегри-
рования точных уравнений движения (3.2), (3.4), (3.8). Здесь, как и ранее, N 
– число оборотов центра масс спутника вокруг притягивающего центра, а q – 
угол между вектором угловой скорости спутника U и осью e3 наибольшего мо-
мента инерции. Эти графики построены для следующих значений параметров:
	 g = m = e = e =2 31, 1, 0.02, 0.04 .

В данном примере, как следует из графиков, для начальных условий 
U(0) = 1.2, r(0) = 2.0 захват в резонансное вращение 1 : 1 происходит при 
N1 ≈ 800 (r1 ≈ 1.8). При этом в интервале N1 < N < N2, где N2 ≈ 1700 (r2 ≈ 1.3), ре-
зонансное движение спутника представляет собой вращение вокруг оси e3 
наибольшего момента инерции (q* = 0). При достижении значения N2 спут-
ник совершает поворот на 90° и в интервале N2 < N < N3, где N3 ≈ 2800 (r3 ≈ 0.8), 
резонансное вращение происходит вокруг оси e2 среднего момента инерции. 
При N = N3 спутник снова поворачивается на 90° и возвращается в режим ре-
зонансного вращения вокруг оси e3 наибольшего момента инерции. Далее 
в этом резонансном режиме спутник эволюционирует до тех пор, пока не 
достигнет своего положения равновесия относительно орбитального базиса 
(r = 0, U = 1).

Наблюдаемое на рис. 4a, в, г поведение переменных U, X = y – (t – s) и q 
полностью согласуется с формулами (4.29), (4.30), (4.36), (4.37), а поведение 
угла нутации на рис. 4б свидетельствует о том, что на резонансных вращениях 
1 : 1 ось вращения спутника монотонно эволюционирует в сторону нормали к 
плоскости орбиты.

Заключение. В работе получены уравнения вращательного движения тре-
хосного спутника с шаровым демпфером на эллиптической орбите в безраз-
мерных переменных и проведено детальное исследование пространственных 
резонансных вращений 2  : 1 и 1  : 1 на круговой орбите. Эти резонансные 
вращения обусловлены синхронизацией между вращательным движением 
спутника и движением его центра масс и представляют собой эволюциони-
рующие процессы, в которых величина угловой скорости спутника остается 
практически неизменной, равной угловой скорости орбитального базиса для 
резонанса 1 : 1 и удвоенной угловой скорости орбитального базиса для резо-
нанса 2 : 1, а ось вращения спутника монотонно эволюционирует в сторону 
нормали к плоскости орбиты. Получены явные формулы, описывающие по-
ведение фазовых переменных на указанных резонансных вращениях, опре-
делены интервалы значений угла нутации, в пределах которых существуют 
пространственные резонансные вращения 1 : 1 и 2 : 1, а также интервалы их 
асимптотической устойчивости/неустойчивости.

Аналитические выводы работы подтверждаются результатами компьютер-
ного моделирования.
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Abstract – For a three-axis satellite with a ball damper, resonant rotations in the 
central gravitational field are studied. The equations of the rotational motion of a 
satellite in an elliptical orbit are obtained. For the case of a circular orbit, spatial 
resonance rotations of 1 : 1 and 2 : 1 were investigated using the averaging method.
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