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Проводится качественный анализ дифференциальных уравнений, опи-
сывающих вращение вокруг неподвижной точки динамически несим-
метричного твердого тела, заключенного жестко в сферическую оболоч-
ку, к которой примыкает один шар и один диск. Рассматриваются случаи 
движения тела как по инерции, так и под действием потенциальных сил. 
Установлено, что при отсутствии внешних сил уравнения движения име-
ют семейства решений, соответствующие положениям равновесия тела, 
а в случае потенциальных сил – многообразия маятниковых движений. 
Для ряда найденных решений получены необходимые и достаточные 
условия устойчивости по Ляпунову.
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1. Введение. Рассматриваемая задача восходит к работе Чаплыгина [1] 
о качении без проскальзывания динамически несимметричного уравнове-
шенного шара по горизонтальной плоскости. Интегрируемость уравнений 
движения данной системы была установлена Чаплыгиным путем явного 
сведения их к квадратурам. Задаче Чаплыгина и ее интегрируемым обоб-
щениям посвящено немало работ (см. [2, 3]). Интерес к подобного рода 
задачам обусловлен, в частности, их прикладным значением. Такие задачи 
возникают, например, в приложениях при управлении роботами-шарами 
[4–6].

В настоящей работе проводится качественный анализ дифференциаль-
ных уравнений [3], представляющих собой интегрируемое обобщение си-
стемы [2]. Согласно А. Пуанкаре [7] задача сводится к выделению особых 
решений уравнений и исследованию их окрестности (анализ устойчивости, 
притяжения и бифуркации решений). В результате получается фазовый 
портрет исследуемой системы. У систем общего вида особыми являются 
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положения равновесия и периодические движения. В случае консервативных 
систем в качестве особых можно рассматривать стационарные множества. Это 
инвариантные множества любой конечной размерности, на которых первые 
интегралы задачи (или их комбинации) принимают стационарное значение. 
Обладающие указанным свойством нульмерные множества называются ста-
ционарными решениями, множества положительной размерности – стацио-
нарными инвариантными многообразиями (ИМ). Предлагаемая работа по-
священа выделению стационарных множеств указанных дифференциальных 
уравнений и исследованию их устойчивости. Для нахождения и анализа таких 
множеств применяется метод Рауса–Ляпунова и его обобщения [8–12].

2. Постановка задачи. Рассматривается вращательное движение относи-
тельно неподвижной точки динамически несимметричного твердого тела, за-
ключенного жестко в сферическую оболочку (рис. 1). Геометрический центр 
последней совпадает с неподвижной точкой O тела. К сферической оболоч-
ке примыкает один шар и один диск. Предполагается, что проскальзывание 
в точке контакта шара с оболочкой отсутствует. Диск – неголономный шар-
нир – касается внешней поверхности сферической оболочки. Центр шара и 
ось диска неподвижны в пространстве.

Для описания движения механической системы вводится инерциальная 
система координат OXYZ и жестко связанная с движущимся телом коорди-
натная система Oxyz, оси x, y, z которой направлены вдоль главных осей инер-
ции тела для точки O. Движение механической системы в системе координат 
Oxyz описывается дифференциальными уравнениями [3]:

	
ˆ ˆ ,1 1 1= , =

= , =

QR M D D R× + g × + m + ×w + g ×

× ×

I I N E N

E E

w w w w w

g g w w









	 (2.1)

и уравнениями связей:
	 ˆ .1 = 0, ( , ) = 0R R× + × Ew g w g w 	 (2.2)

Рис. 1. Твердое тело в шаровом подвесе.
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Здесь w = (w1, w2, w3), R – угловая скорость тела и радиус сферической обо-
лочки, w = (ŵ1, ̂w2, ̂w3), R1 – угловая скорость и радиус примыкающего шара, 
g = (g1, g2, g3) – единичный вектор оси, соединяющей фиксированную точку 
O с центром примыкающего шара, E = (e1, e2, e3) – вектор нормали плоскости, 
содержащей фиксированную точку O и ось диска, I = diag(A, B, C) – тензор 
инерции тела, D1 – тензор инерции примыкающего шара, N = (N1, N2, N3), m – 
неопределенные множители, отвечающие реакциям связей (2.2), MQ – момент 
внешних сил. Положение векторов E и g относительно друг друга предпола-
гается произвольным.

Как показано в [3], при помощи уравнений связей (2.2) дифференциаль-
ные уравнения (2.1) приводятся к виду:
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Неопределенный множитель m находится из условия равенства нулю 
производной второго соотношения (2.2) в силу дифференциальных уравне-
ний (2.3).

Если на тело действуют внешние силы, например потенциальные:

	 ,=Q
U U

E
∂ ∂

× + ×
∂g ∂

M Eg

где U = U(g, E ) – потенциальная энергия внешних сил, уравнения (2.3) допус-
кают следующие первые интегралы:
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и в общем случае являются неинтегрируемыми. Здесь ,=Q D D+ − ⊗I I g g   
2

11 1 12 1 2= [ ], = , = ,ijc c cg ⊗ g g g g 
 

При отсутствии внешних сил (U = 0) и (E × g) ≠ 0, уравнения (2.3) имеют 
два дополнительных первых интеграла

	 ,1 2= ( , ), = ( , ( ))F F× × ×K E K E Eg g 	 (2.5)

где .= ( , )Q Qw −K I I E Ew  В этом случае система (2.3) становится вполне 
интегрируемой.

Цель настоящей работы заключается в выделении стационарных решений и 
ИМ уравнений (2.3) и исследовании их устойчивости. Анализ уравнений про-
водится на ИМ, определяемом соотношением V4 = (w, E) = 0 (2.4). Рассматри-
ваются случаи движения тела по инерции и под действием потенциальных сил.

3. Стационарные решения и ИМ при движении тела по инерции. C помощью 
соотношения V4 = (w, E) = 0 исключим переменную w1 из дифференциальных 
уравнений (2.3) и интегралов (2.4), (2.5). В координатной форме уравнения и 
интегралы будут иметь вид: 
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Здесь F1, F2 – дополнительные первые интегралы соответственно 3-й и 6-й 
степени.
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Следуя выбранной методике, образуем из интегралов (3.2) их полную ли-
нейную комбинацию (возможно использование и нелинейных комбинаций) 

	 ,0 1 1 2 2 3 3 4 1 5 22 = 2 2 2 2H V V V F FW l − l − l − l − l − l 	 (3.3)

где li (i = 0, ..., 5) – параметры семейства интегралов W, и запишем необходи-
мые условия экстремума W по фазовым переменным 
	 .2 3/ = 0, / = 0, / = 0, / = 0 ( = 1, 2, 3)i ie i∂W ∂w ∂W ∂w ∂W ∂g ∂W ∂ 	(3.4)

Решения уравнений (3.4) позволяют определить семейства стационарных 
решений и ИМ дифференциальных уравнений (3.1), соответствующие се-
мейству первых интегралов W. Для нахождения решений применяется систе-
ма аналитических вычислений.

Очевидно, в рассматриваемой задаче отсутствуют решения, соответствую
щие перманентным вращениям и регулярным прецессиям тела. Второе урав-
нение (2.2) – условие отсутствия таких вращений. Далее находятся решения 
уравнений (3.1), соответствующие положениям равновесия механической 
системы.

3.1. Положения равновесия. Положим w2 = w3 = 0 в уравнениях (3.4) и допол-
ним их соотношениями V1 = 1, V2 = 1 (3.2). Результатом будет система уравнений: 
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	 (3.5)

Рассматривая левые части этой системы как полиномы от g1, g2, g3, e2, l1, 
l2, построим базис Гребнера относительно указанных переменных. Будем ис-
пользовать лексикографическое упорядочение l1 > l2 > g1 > g2 > l3 > e2. Тем са-
мым система уравнений (3.5) преобразуется к виду, позволяющему разделить 
ее на две подсистемы: 
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Непосредственно вычислением по определению ИМ проверяется, что 
первые четыре уравнения каждой подсистемы совместно с соотношениями 
w2 = w3 = 0 определяют два ИМ коразмерности 6 дифференциальных уравне-
ний (3.1): производная от указанных выражений, вычисленная в силу уравне-
ний (3.1), обращается тождественно в нуль на данных выражениях.

Из последних двух уравнений каждой подсистемы найдем l1 = l3, l2 = l3. 
Подставив их в (3.3), получим семейства интегралов 2W1,2 = 2l0H ± l3V1 ± l3V2 – 
– 2 l3V3 – 2l4F1 – 2l5F2, принимающие стационарное значение на найденных 
ИМ. Интеграл V3 обращается в ±1 на этих ИМ, что соответствует случаю, 
когда векторы E и g параллельны или противоположно направлены.

Дифференциальные уравнения 1 3= 0, = 0e e   на каждом ИМ имеют сле
дующее семейство решений: 

	 .0 0
1 1 3 3= = const, = = conste e e e 	 (3.8)

Таким образом, с геометрической точки зрения, найденным ИМ в про-
странстве R8 соответствуют двумерные поверхности, каждая точка которых 
является неподвижной точкой в фазовом пространстве.

В исходном фазовом пространстве семейству (3.8) соответствуют следую-
щие 4 семейства решений: 

	
,

,
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,

.
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	 (3.10)

Чтобы их получить, нужно подставить (3.8) в уравнения ИМ. Выражения 
(3.9), (3.10) определяют четыре двухпараметрические семейства решений диф-
ференциальных уравнений (3.1), e1

0, e3
0 – параметры семейств. Условия веще-

ственности решений:

	  0 0 0 02 0 02
1 3 3 3 1 3( = 0 и = 1) или ( 1 < <1 и 1 1 ).e e e e e e± − − − ≤ ≤ −  

С механической точки зрения, при указанных ограничениях на параметры e1
0, 

e3
0 элементам семейств решений (3.9), (3.10) соответствуют положения равно-

весия исследуемой системы.
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4. Стационарные решения и ИМ при движении тела в силовом поле. Диффе-
ренциальные уравнения (2.3) и интегралы (2.4) на ИМ, определяемом соотно-
шением V4 = (w, E) = 0, при наличии потенциальных сил имеют вид: 

  

2
2 2 3 1 2 1

1
2
3 1 3 1 2 2 3 2

1 1 2 2 1 3 3 2 2 3 1 2 1
2 2
1 3 2 32 3

1
= [( ) ( ) ( )[( )( )

( ) ] ( ) ( ) [( )( ( )
( )) ( ) ( )] ( )

(( )( ) ( ) ) ( )

Q

Q Q

A B D A D A C C D A D D

D A D B C D C D C D e A D
D e e D A D e e D C D M

C D A D D D A D M D A D M

w − − + g g w w − − + + − g −
σ

− + g w w + − + g g w w +m + + +
+ g g − g + + g g − g + + g g +

+ + + − g − + g + + g g



,

2 2
3 1 2 1 2

1

2 3 1 3 1 3 2 3 3

1 1 3 3 1 2 2 3 3 2 1 3 1
2 2

2 3 1 22

]

1
= [( )(( )( ) ( ) ) ( )

( ) ( ) ( ) [( )( ( )
( )) ( ) ( )] ( )

( ) (( )( ) ( ) )

Q

Q

A B B D A D D D A D A C D

A D B C D B D B D e A D
D e e D A D e e D B D M

D A D M B D A D D D A D

w − − + + − g − + g w w − − ×
σ

× + g g w w + − + g g w w +m + + +
+ g g − g + + g g − g + + g g +

+ + g g + + + − g − + g



,

,
,

3

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

]

= , = , =
= , = , =

QM

e e e e e e e e e
g g w − g w g g w − g w g g w − g w

w − w w − w w − w
  

  

	 (4.1)

	 ,

.

2 2 2 2 2
1 2 3 3 1 1 2 2

3 1 1 2 2 3

2 2 2 2 2 2
1 1 2 3 2 1 2 3 3 1 1 2 2 3 3 1

2 = ( ) ( ) ( ) ( )

2 ( ) 2 = 2

= = 1, = = 1, = =

H A D B D C D D D

D U h

V V e e e V e e e c

+ w + + w + + − g w − g w + g w −

− g g w + g w w +

g + g + g + + g + g + g



1 2 2 1 1 2 3
2

3 1 1 3 2 3 3 1 1 3 3 1

2 2 3 3 2 1 2 2

1 1 2 2 1 3 3 2 2 3 1 3

1
 Здесь = [( )(( )(( ) ( )) ( )

( )) ( )(( )(( ) ( ))
( ) ( )) ( )(( )(( )

( )) ( ) ( ))

B C C D B D e D e e D B D

e e A B B D A D e D e e
D A D e e A C C D A D e

D e e D A D e e

m − − + + + g g − g + + g ×
σ

× g − g w w + − + + + g g − g +
+ + g g − g w w − − + + +

+ g g − g + + g g − g w w

,

1

2 2 1 1 2 3 3 1 1 3 21

1 1 2 2 1 3 3 2 2 3 32

1 1 3 3 1 2 2 3 3 2 3
2

13 1 2 23 2 12 1 31

(( )(( )
( )) ( ) ( )) (( )(( )

( )) ( ) ( )) (( )( )

( ) ( ) ( ) ( )) ]

=

Q

Q

Q

Q

C D B D e
D e e D B D e e M C D A D e

D e e D A D e e M B D A D e

D B D e e D A D e e M

M a a a

+ + + +
+ g g − g + + g g − g + + + +

+ g g − g + + g g − g + + + +
+ + g g − g + + g g − g

g g + g − g g −

,

2
22 2 3 33 2 3 23 3 13 1 2

2 2
23 2 12 1 3 22 2 3 33 2 3 23 3 3 2 2 3 3 2 2 3

2 2 2
13 1 23 1 2 11 1 3 33 1 3 12 2 3 13 3 13 12

2
23 1 2 11 1 3 33 1 3 12 2 3 13 3 3 1 1 3 1

=Q

a a a b e e

b e b e e b e e b e e b e a a b e b e

M a a a a a a b e

b e e b e e b e e b e e b e a a b

g g + g g − g + +

+ − − + − + g − g + −
− g − g g + g g − g g + g g + g − −

− + − + + − g + g + ,

.

3 3 1
2 2 2

12 1 11 1 2 22 1 2 12 2 23 1 3 13 2 3 12 13
2

11 1 2 22 1 2 12 2 23 1 3 13 2 3 2 1 1 2 2 1 1 2

=Q

e b e

M a a a a a a b e

b e e b e e b e b e e b e e a a b e b e

−
g − g g + g g − g + g g − g g + −

− + − + − + g − g + − 	
Выражения 1 1 2, ,w σ σ  имеют тот же вид, что и в разделе 2.
Пусть исследуемая механическая система движется в поле с потенциалом 
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1 1

( , ) = ,
2 2

T T T TU a b+ + +E a b E E Eg g g g 	 (4.2)
где aT = (a1, a2, a3), bT = (b1, b2, b3) – постоянные векторы, = ( ), = ( )ij ija a b b

  – 
постоянные симметрические матрицы 3 × 3.

Выражение (4.2) можно интерпретировать как потенциал нескольких си-
ловых полей. Например, при = = 0a b  и соответствующих значениях ai, bi его 
можно рассматривать как потенциал однородного гравитационного и магнит-
ного полей [13], при = = = 0 и =a b b a I

  ( )= = = 0 и =a b a b I

  – как потен-
циал ньютоновского поля притяжения или задачи Бруна [14].

Как и в предыдущем случае, для нахождения стационарных решений и ИМ 
дифференциальных уравнений (4.1) образуем линейную комбинацию из пер-
вых интегралов этих уравнений 

	 0 1 1 2 2 3 32 = 2 2H V V VW l − l − l − l 	 (4.3)
и запишем необходимые условия экстремума W по фазовым переменным 
	 .3/ = 0, / = 0, / = 0, / = 0 ( = 1, 2, 3)i ie i∂W ∂w ∂W ∂w ∂W ∂g ∂W ∂ 	 (4.4)

4.1. Положения равновесия. Положим w2 = w3 = 0 в уравнениях (4.4). Полу-
чим систему уравнений: 

	

,
,
,

,
,

1 11 1 12 2 13 3 0 1 1 1 3

2 12 1 22 2 23 3 0 2 1 2 3

3 13 1 23 2 33 3 0 3 1 3 3

1 11 1 12 2 13 3 0 1 2 1 3

2 12 1 22 2 23 3 0 2 2 2 3

3 13 1 23 2

( ) e = 0

( ) e = 0

( ) e = 0

( ) = 0

( ) = 0

( e

a a a a

a a a a

a a a a

b b e b e b e e

b b e b e b e e

b b b e

+ g + g + g l − g l − l

+ g + g + g l − g l − l

+ g + g + g l − g l − l

+ + + l − l − g l

+ + + l − l − g l

+ + .33 3 0 3 2 3 3) = 0b e e+ l − l − g l

	 (4.5)

Для полиномов системы (4.5) построим лексикографический базис Греб-
нера относительно l1, l2, l3, g2, g3, e3 при следующих ограничениях на пара-
метры задачи: ai = bi = 0 (i = 1, 2, 3), a13 = a23 = b13 = b23 = 0, a22 = a11, b22 = b11.

Результатом будет система уравнений: 

	

,

,

,

2 2 2 2
3 3 12 2 1 12 2 1

2 2
12 12 2 1 1 2 0 12 1 12 1 3

2 2
12 1 11 1 12 2 12 1 11 1 12 2 0 12 1 12 1 2

2 2 2 2
12 12 1 2 12 1 2 11 12 1 12 1 0 12 1 12 1

= 0, = 0, ( ) ( ) = 0

( ) ( ) = 0

( ( ) ( )) ( ) = 0

( ( ) ( )) ( )

e b e e a

a b e e a b e

b e b e b e a b b b e a

a b e e a a b e a b e a

g − + g − g

g + g l − g + l

+ + g g − g l − + g l

− g g − + g l + + g l .1 = 0

Первые три уравнения этой системы совместно с соотношениями 
w2 = w3 = 0 определяют ИМ коразмерности 5 уравнений движения (4.1). По-
следние три уравнения позволяют получить первые интегралы дифференци-
альных уравнений на этом ИМ [15].

Пересечением найденного ИМ с поверхностями, определяемыми интегра-
лами V1 = 1, V2 = 1, будет одномерное ИМ, уравнения которого записываются 
так: 
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,

.

2 2 2 2
2 3 3 3 12 2 1 12 2 1

2 2 2 2 2 2
1 1 2 3 2 1 2 3

= 0, = 0, = 0, = 0, ( ) ( ) = 0

= = 1, = = 1

e b e e a

V V e e e

w w g − + g − g

g + g + g + +
	 (4.6)

Дифференциальное уравнение 1 = 0e  на этом ИМ имеет семейство 
решений: 
	 .0

1 1= = conste e 	 (4.7)
С геометрической точки зрения, ИМ (4.6) в пространстве R8 соответству-

ет кривая, каждая точка которой является неподвижной точкой в фазовом 
пространстве.

Семейству решений (4.7) в исходном фазовом пространстве соответству-
ет до восьми однопараметрических семейств решений дифференциальных 
уравнений (4.1). Ниже приведены 2 семейства, остальные отличаются от них 
только знаками. 

	
20 0

2 3 1 1 2 1 3= 0, = 0, = , = 1 , = 0,e e e e ew w − − 	 (4.8)

	
, .1 2

1 2 3
12 12

= = , = 0
2 2

z z

a a
g − g g

Здесь e1
0 – параметр семейств, z1 = (a12 + b12(1 – 2e1

02))1/2, z2 = (a12 + b12(1 – 2e1
02))1/2. 

Условиями вещественности решений, в частности, будут: a12 ≥ b12 > 0, 
–1/21/2 ≤ e1

0 ≤ 1/21/2.
Интеграл V0 на решениях (4.8) принимает значения 

	 .
20 0

1 1 1 2

12

1

2

e z e z

a

−
−



Последнее означает, что решения существуют при любых углах между век-
торами E и g.

С механической точки зрения, вещественным решениям (4.8) соответству-
ют положения равновесия исследуемой системы. Эти положения равновесия 
существуют, когда механическая система находится под воздействием внеш-
них сил с потенциалом 

	 .2 2 2 2 2 2
11 1 2 12 1 2 33 3 11 1 2 12 1 2 33 32 = ( ) 2 ( ) 2U a a a b e e b e e b eg + g + g g + g + + + + 	 (4.9)

Из уравнений (4.4) найдем значения l0, l1, l2, l3, при которых решения 
(4.8) удовлетворяют этим уравнениям. Подставив их в (4.3), получим се-
мейства интегралов, принимающие стационарное значение на решениях (4.8): 

	
,

.

20 0
11 12 12 12 12 1 1 1 2

1,2 1
12 12

2 20 0 0
11 12 12 12 12 1 1 1 2 12 12 1

2 3212 12 0 0
1 1 1 2

( ( ) (2 1 e ))
2 = 2

( ( ) (2 1 )) 2 2 (1 2 )

1

a a b a b e z z
H V

a b

b a b b b e e z z a b e
V V

a b
e z e z

+ + − ±
W −

+

+ − − ± −
− −

+
− ±


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Приведем еще два найденных решения дифференциальных уравнений 
(4.1): 

	
,

,

2 12 2 11
2 3 1 2 32 2 2

12 11 22 12 11 22 12 11 22

2 12 2 11
1 2 32 2 2

12 11 22 12 11 22 12 11 22

= 0, = 0, = , = , =

= , = , =

b b b b
e e e

b b b b b b b b b

b b b b

b b b b b b b b b

κ
w w − ±

− − −

κ
g g − g

− − −


	(4.10)

где 4 2 2 2 2 2 1/ 2
12 12 2 11 22 11 22 2= ( ( 2 ) ( ))b b b b b b b bκ − + + − . Условия вещественности ре-

шений: b22 ≥ b2 > 0, 2
11 2 22/(2 ).b b b≤ −

Решения (4.10) можно получить, построив лексикографический базис для 
полиномов системы (4.5) относительно переменных g1, g2, g3, e1, e2, e3 при сле-
дующих ограничениях на параметры задачи и параметры семейства интегра-
лов W: 

	
,

.

2 12 11 11 12 2 22 11 12 12
1 13 2 232 2

12 11 22 12 11 22

33 33
3 13 23 1 3 2 1 3 12 2

12 11 22 12 11 22

( ) ( )
= , = 0, = , = 0

= , = = = 0, = , = , =

b a b a b b a b a b
a a a a

b b b b b b

a b
a b b b b

b b b b b b

− −

− −
κ κ

± l l l l
− −



Подстановка l2 = l3 = l1 в (4.3) дает семейство интегралов 02 = 2 HW l −  
1 1 2 3( 2 ),V V V− l + +  принимающее стационарное значение на решениях (4.10). 

Интеграл V3 на этих решениях обращается в –1, что соответствует случаю, 
когда векторы E и g противоположно направлены.

С механической точки зрения, вещественным решениям (4.10) соответ-
ствуют положения равновесия рассматриваемой системы. Они получены в 
случае, когда на механическую систему действуют силы с потенциалом 

	
ˆ 2 2 2 2 2 2

11 1 12 1 2 22 2 33 3 11 1 12 1 2 22 2 33 3

2 12 11 11 12 1 2 22 11 12 12 2 33 3 33 3 2 22
12 11 22

2 = 2 2

2
[ ( ) ( ) ] 2 .

U a a a a b e b e e b e b e

b a b a b b a b a b a b e b e
b b b

g + g g + g + g + + + + +

+ − g + − g ± κg κ +
−



4.2. Движения маятникового типа. В случае, когда векторы E и g ортого-
нальны, выявлено несколько таких движений.

При a1 = a2  = b3 = a13 = a23 = b13 = b23 = 0 уравнения 

	 2 1 2 3 3= 0, = 0, =0, = 1, = 0ew g g g ± 	 (4.11)

определяют два ИМ коразмерности 5 уравнений движения (4.1) .
Дифференциальные уравнения на этих ИМ имеют вид 

	 ,3 1 12 1 2 2 1 11 22 1 12 2

1 2 3 2 1 3

1
= [ ( ) ( ( ) )]

= , =

e b e b e b b b e b e
C

e e e e

w + − + − +

w − w



 

и описывают маятникоподобные колебания тела с неподвижной точкой от-
носительно оси Oz.
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Когда a1 = a3 = b2 = a12 = a23 = b12 = b23 = 0, уравнения (4.1) имеют два ИМ: 
	 .3 1 2 3 2=0, =0, = 1, =0, = 0ew g g ± g 	 (4.12)

Дифференциальные уравнения на ИМ (4.12) 

	 2
2 1 3 13 1 3 1 11 33 1 13 3 1 3 2 2 1 2

1
= [ ( ) ( ( ) ) ], = , =e b b e e b b b e b e e e e e

B
w − + − + − − − w w  

описывают маятникоподобные колебания тела относительно оси Oy.
Непосредственно вычислением проверяется, что интеграл 2

3= HVW


  при-
нимает стационарное значение на ИМ (4.11), (4.12).

При любых углах между векторами g и E найдено два решения, соответ-
ствующих маятниковым движениям.

При a3 = b3 = a13 = a23 = b13 = b23 = 0 дифференциальные уравнения (4.1) име-
ют ИМ коразмерности 3: 
	 2 3 3= 0, = 0, = 0.ew g

Дифференциальные уравнения 

	 ,

3 2 12 1 1 1 11 22 1 12 2 2

2 12 1 1 1 11 22 1 12 2 2

1 2 3 2 1 3 1 2 3 2 1 3

1
= [( ) ( ( ) )

( ) ( ( ) ) ]

= , = , = , =

b b e e b b b e b e e
C D

a a a a a a

e e e e

w + − + − + +
+

+ + g g − + − g + g g
g g w g − g w w − w



   

на этом ИМ описывают маятникоподобные колебания тела относительно оси 
Oz.

Еще одно решение такого типа существует при a2 = b2 = a12 = a23 = b12 = 
= b23 = 0. На ИМ, определяемом соотношениями w3 = 0, g2 = 0, e2 = 0, диффе-
ренциальные уравнения 

	 ,

2 3 13 1 1 1 11 33 1 13 3 3

3 13 1 1 1 11 33 1 13 3 3

1 3 2 3 1 2 1 3 2 3 1 2

1
= [( ) ( ( ) )

( ) ( ( ) ) ]

= , = , = , =

b b e e b b b e b e e
B D
a a a a a a

e e e e

w − + − + − + +
+

+ + g g − + − g + g g

g − g w g g w − w w



   

описывают маятникоподобные колебания тела относительно оси Oy.
5. Об устойчивости стационарных решений и ИМ.
5.1. Движение тела по инерции. Исследуем устойчивость ИМ, определяе-

мого уравнениями: 

	 .2 2 2
2 3 1 1 2 2 3 3 1 2 3= = 0, = 0, = 0, = 0, = 1e e e e e ew w − g − g − g + + 	 (5.1)

ИМ (5.1) соответствует случаю, когда векторы g и E параллельны. Иссле-
дование проводится в картах 
	 2 3 1 1 2 3 3 2= 0, = 0, = , = , = , =e z e e zw w g g ± g ±

на этом ИМ. Здесь и далее .2 2
1 3= 1z e e− −

Интеграл 1 0 3 1 2 3 4 1 5 22 = 2 ( 2 ) 2 2H V V V F FW l + l + − − l − l  используется для 
получения достаточных условий.
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Введем отклонения: 
	 .1 2 2 3 3 1 1 4 2 5 3 3 6 2= , = , = , = , = , =y y y e y z y e y e zw w g − g g − 

Вторая вариация интеграла W1 на множестве, определяемом первыми ва-
риациями условных интегралов 

	
1 1 3 4 3 5 2 6

3 1 3 3 5 4 6

= 2( ) = 0, = 2 = 0,

= ( ) = 0

V e y zy e y V zy

V e y e y z y y

d ± + d ±

d + ± +

записывается так: 
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2 2 2 2
1 11 1 12 1 2 22 2 13 1 3 23 2 3 33 3

2
14 1 4 24 2 4 34 3 4 44 4
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y y y y y y y

d W α + α + α + α + α + α +

+ α + α + α + α
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11 122 2
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A B
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+ + + l
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α ±
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2
1 5

6
1 3

) ( ))
( )

e A D z
B D

e e
− + l

+ + l

	 .
2

6 1 3 1 3
24 1 5 34 442 2

1 3 3 3

( ) (1 )
= ( ) , = , =

2

C D z ze eA D
A C e

e e e e

+ l l − l+ 
α − − l α ± α  



Условия знакоопределенности 

	

,

,

,

2 2 2
1 3 3 3

1 22 2
3 3

2 2 2 2 23
3 1 3 0 3 12 2

1 3

2 2 2 2 2
1 3 5 6

2 2
4 1 32 2

1 3

2 2 2 2
0 3 1 3 0 3

( )
= > 0, = > 0

= ((( ) ( ) ) (( ) (( )

( ) ) )( )) > 0

1
= (( )( ( ) ) ( )( ) )

( ( 2 ( ) ( ) )

e e

e e

C D e A D e C D e A D
e e

A C e e

C D A D A B e B C A D e
e e

A C D A B e B C e

+ l l
∆ ∆

l
∆ + + + l l − + + +

− − l + l

∆ + + − − + − + ×

× l l − + + − − + − l l 2 2
5 6

2 2 2 2 2
1 3 5 6

( )

(( )( ( ) ) ( )( ) )( ) ) > 0C D A D A B e B C A D e

l + l +

+ + + − − + − + l + l

	 (5.2)
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квадратичной формы d2W1 будут достаточными для устойчивости исследуе-
мого ИМ.

Дифференциальные уравнения 1 3= 0, = 0e e   на ИМ (5.1) имеют семейство 
решений:
	 .0 0

1 1 3 3= = const, = = conste e e e 	 (5.3)
Таким образом, ИМ (5.1) можно рассматривать как семейство ИМ, где  

e1
0, e3

0  – параметры семейства.
Пусть e1

0 = e3
0, B = 3A/2, C = 2A и A  > D. С учетом (5.3) и введенных ограни-

чений неравенства (5.2) примут вид: 

	
2
3
20

1

> 0, > 0,
e

l
l

	 .

22 0 2 23
0 3 1 5 620

1

22 2 0 2 2 2 2
1 0 3 0 3 5 640

1
22 2 0 2 2 2

1 5 6

((3 2 ) (2 (3 ) ( 5))( )) > 0,

1
(6 2 ( 4))(2 2(3 2 ) ( )

(6 2 ( 4))( ) ) > 0

A D D A D A e
e

AD D A e A D
e

AD D A e

l
+ l l − + − − l + l

+ + + l l − + l l l + l +

+ + + + l + l

Последние неравенства совместны при выполнении следующих условий: 

 

,

,

0 0
3 5 6 0 1 1

20 2 2
1 5 6 0 0

0 1 1
3

1 1
> 0, 0, 0 и (((2 > и ( = или = )) или

2 2

1 2e ( ) 1 1
(2 > и ( < < 0 или 0 < < )))

2 2

e e

A
e e

l l ≠ l ≠ l σ −

− l + l
l σ + −

l

	 (5.4)

Здесь .2 2
5 6 3= (3 2 )( )/A Dσ + l + l l

Как можно видеть, условия (5.4) разделяются на две группы. Ограничения 
на параметр семейства ИМ (параметр e1

0) дают достаточные условия устойчи-
вости элементов исследуемого семейства. Условия на параметры l0, l3, l5, l6 
семейства интегралов W1 выделяют из этого семейства подсемейство, которое 
позволяет получить указанные достаточные условия.

Когда векторы E и g противоположно направлены, уравнения ИМ, соот-
ветствующего этому случаю, имеют вид: 

	 .2 2 2
2 3 1 1 2 2 3 3 1 2 3= = 0, = 0, = 0, = 0, = 1e e e e e ew w + g + g + g + + 	 (5.5)

Доказана неустойчивость по первому приближению семейств реше-
ний (3.10), принадлежащих ИМ (5.5). Рассмотрим одно из этих семейств, 
например, 

	
,

,

2 20 0 0 0
2 3 1 1 2 1 3 3 3

2 20 0 0 0
1 1 2 1 3 3 3

= = 0, = , = 1 , =

= , = 1 , =

e e e e

e e e e e e e

w w g − g − − g −

− − −
	 (5.6)

Введем отклонения от невозмущенного движения: 
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	 ,

0 0 0
1 1 1 2 2 3 3 3 4 1 1

0
5 2 6 3 3 7 2 8 3

= , = , = , = ,

= , = , = , =

y e e y e y e e y e

y y e y y

− + χ − g +

g − χ g + w w

где χ − −
2 20 0

1 3= 1 e e , и запишем уравнения первого приближения: 

	

,

,

.

0 0
1 3 7 8 4 3 7 8 7

2 2 20 0 0 0 0 0
3 7 1 3 8 1 3 8 3 7

2 5 80 0 0 0
1 1 1 1

2 20 0 0 0
3 7 3 8 3 8 3 7

3 60 0 0 0
1 1 1 1

= , = , = 0

( ) ( )
= , = , = 0

e

(1 ) (1 )
= , =

y e y y y e y y y

e y e e y e e y e y
y y y

e e e

e y e y e y e y
y y

e e e e

− − χ + χ

χ + + χ
− −

− χ χ −
− −

  

  

 

	 (5.7)

Характеристическое уравнение системы (5.7): l8 = 0 Как можно видеть, все 
корни этого уравнения нулевые.

Жорданова форма матрицы системы (5.7) недиагональная: 

	
.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

=J

 
 
 
 
 
 
 
 
  

Два жордановых блока вида 

	
0 1

0 0

 
  

соответствуют двум парам нулевых корней. Откуда следует неустойчивость по 
первому приближению элементов исследуемого семейства решений. Такой же 
результат получен для второго семейства решений (3.10).

5.2. Движение тела в силовом поле. Исследуем устойчивость семейств реше-
ний (4.8), полагая, что коэффициенты в выражении потенциальной энергии 
(4.9) имеют вид: 
	 ,11 12 33 11 12 334 = , 2 = , = , = 2 , = , = 3a a a a a a b b b b b b 	 (5.8)

где a, b – некоторые постоянные.
С учетом (5.8) рассматриваемые семейства решений и интегралы, прини-

мающие на них стационарное значение, запишутся так: 

,
20 0 1 2

2 3 1 1 2 1 3 1 2 3= 0, = 0, = , = 1 , = 0, = , = , =0e e e e e
a a

r r
w w − − g − g g

	 (5.9)
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.

2

2 2

2

0 0
1 1 1 2

1,2 1

0 0 0
1 1 1 2 1

2 3
0 0
1 1 1 2

( ( 2 ) 4 (2 1 ))
2 = 2

4( 2 )

2( ( 2 ) (2 1 )) 2 (1 2 )
2

1

a a b a be e
H V

a b

b a b b be e ab e
V V

a b
e e

+ + − ± r r
W − −

+

+ − − ± r r −
− −

+ − r ± r




Здесь 
20 1/ 2

1 1= ( / 2 (1 2 ))a b er + − , 
20 1/ 2

2 1= ( /2 (1 2 ))a b er − − .
Исследуем устойчивость одного из семейств решений (5.9), например, 

20 0 1 2
2 3 1 1 2 1 3 1 2 3=0, =0, = , = 1 , =0, = , = , =0e e e e e

a a

r r
w w − − g − g − g 	 (5.10)

используя интеграл W~ 1 для получения достаточных условий. В отклонениях 

	

20 0
1 1 2 2 3 1 1 4 2 1 5 3

1 2
6 1 7 2 8 3

= , = , = , = 1 , = ,

= , = , =

y y y e e y e e y e

y y y
a a

w w − + −

r r
g + g + g

на линейном многообразии, определяемом первыми вариациями условных 
интегралов 

	
,

20 0
1 1 6 2 7 2 1 3 1 4

20 0
3 1 6 1 3 2 4 1 7

2
= ( ) = 0, = 2(e 1 ) = 0

1
= ( ) 1 = 0

V y y V y e y
a

V e y y y e y
a

d − r + r d − −

d − r + r − −

вторая вариация интеграла W~ 1 имеет вид: d2 W
~

1 = Q1 + Q2, где 

	 ,2 2 2 2 2
1 55 5 58 5 8 88 8 2 11 1 22 2 66 6= , =Q y y y y Q y y yα + α + α β + β + β

	

,

,

,

2 20 0 0
1 1 1 2 1

55 58 20 0
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2 2 20 0 2 0 0
1 1 1 1 1 2

11 20
1

( 2 (1 2 1 ) ) (1 2 )
= , =

2( 2 )
1

(3 2 (3 4 1 ) 2 )
=

8( 2 )

(2 2( ) ) 2 ( (1 2 ) 2 1 )
=

4

b a b e e ab e
a b

e e

a a b e e

a b

a A D A B e D b e e e

ae

+ + − + r r −
α α −

+
− r + r

+ − − − r r
α

+
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22 66
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1 1 1 2

23 0 0 2
2 1 1 1 2
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1
= ( ), =
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[(( 2 (1 8 (1 )))
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C D

a
a b e e

e e
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Условия положительной определенности квадратичных форм Q1, Q2: 
	 .1 55 2 1 11 22 66= > 0, = > 0, > 0, > 0, > 0a∆ α ∆ ∆ β β β 	 (5.11)

С учетом условий вещественности решений (5.10) 

	

,

0 0 0 0
1 1 1 1

0
1

1 1 1 1
(( = или = ) и 0) или (( 1 < или < 1) и

2 2 2 2
(( < 0 и ) или ( > 0 и ))) или

1 1
( < < и (( < 0 и < < ) или ( > 0 8 < < )))

2 2

e e a e e

a b a b

e a b a b

− ≠ − ≤ − ≤

r ≤ ≤ −r −r ≤ ≤ r

− − r r r −r

где r = –a/(2(1 – 2e1
02)), неравенства (5.11) совместны при следующих ограни-

чениях на параметры e1
0, a, b: 

	

0
1

0 0
1 1

0 0
1 1

1
> 0 и (( 1 < < и < < ) или

22
1 1

( < < 0 и < ) или (0 < < и < < )
2 22 2

1 1
или ( = и > ) или ( < <1 и < )).

2 22 2

a
a e b

a a
e b e b

a a
e b e b

− − −r −

− r ≤ − −r

≤ r

	 (5.12)

Неравенства (5.12) выделяют из семейства решений (5.10) подсемейство, 
элементы которого устойчивы. Аналогичный результат будем иметь и при ис-
следовании устойчивости элементов 2-го семейства решений (5.9), если для 
получения достаточных условий устойчивости использовать семейство инте-
гралов W2.

Сопоставим достаточные условия (5.12) с необходимыми. Запишем урав-
нения первого приближения. В рассматриваемом случае они имеют вид: 

	

,

,

,

.

20 0 2 8 1 87
1 1 8 2 1 8 3 4 50

1

20 0
1 1 1 2 7

6 0
1

0 20 01
7 1 1 2 1 1 2 6

3

20 0
1 1 3
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8 1 1 1 2 1 4 2 5

= 1 , = , = , = , =

( 1 )
=

= ( ( 1 (2 3 ) (3 2 ))
2

4 (1 2 1 ) )

1
= (2 ( 1 ) ( ))

y yy
y e y y e y y y y

e a a

e e y
y

a e

ae
y a e e y

b e e y

y b e y e y a y y
C D

r r
− − − −

r − − r
−

− r − r + r − r −
r

− + −

+ − − r + r
+

    







	 (5.13)

Здесь yi – отклонения от элементов исследуемого семейства решений,
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2 2 20 0 2 0 0

3 1 1 1 1 1 2= (2 2( ) ) 2 ( (1 2 ) 2 1 )a A D A B e D b e e er + − − − − + − r r ,

Характеристическое уравнение системы (40) 

	
2 24 2 0 0 2 0 0

1 1 1 2 3 1 1

2 2 20 0 0 0 0 0
1 1 1 1 1 1 1 2

(( ) 4 1 2 )[4 ( (3 4 1 )

2( (1 4 (3 (1 ) 2 1 )) 2(1 3 1 ) ))] = 0

C D be e a a e e

b e e e e e e

l + l + − − r r l r + + − +

+ + − + − − + − r r

имеет только нулевые и чисто мнимые корни с простыми элементарными де-
лителями при следующих ограничениях на параметры a, b, e1

0: 

	

0 0
1 1

0 0
1 1

0
1

0 0
1 1

0
1

> 0 и (( = 1 или = 0) и ( = или = )) или,
2 2

1 1
(( = и ) или ( = и )) или,

2 22 2
1

( 1< < и ) или,
22

1 1
( < < 0 и ) или (0 < < и ),

2 22 2
1

8;8 ( < <1 и ).
22

a a
a e e b b

a a
e b e b

a
e b

a a
e b e b

a
e b

± −

≥ − ≤ −

− − −r ≤ ≤ −

− r ≤ ≤ − ≤ ≤ −r

≤ ≤ r

	 (5.14)

Из сопоставления неравенств (5.12) и (5.14) можно заключить, что доста-
точные условия близки к необходимым.

6. Заключение. Проведен качественный анализ дифференциальных урав-
нений, описывающих вращательное движение твердого тела, заключенного 
жестко в сферическую оболочку, к которой примыкает один шар и один диск. 
Рассмотрено движение тела по инерции и под действием потенциальных сил. 
Найдены семейства стационарных решений и стационарные ИМ уравнений 
движения тела и дана их механическая интерпретация. Показано, что в обо-
их указанных случаях существуют положения равновесия тела, соответствую
щие различным углам между векторами E и g. При наличии потенциальных 
сил – движения маятникового типа. Проведено исследование ряда найденных 
решений на устойчивость по Ляпунову. Для положений равновесия тела при 
отсутствии внешних сил доказана неустойчивость по первому приближению. 
При наличии потенциаьных сил для решений указанного типа получены до-
статочные условия устойчивости и сопоставлены с необходимыми.
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ON THE STATIONARY MOTIONS OF A RIGID BODY 
WITH  A  SPHERICAL SUPPORT
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aMatrosov Institute for System Dynamics and Control Theory of Siberian Branch  

of Russian Academy of Sciences, Irkutsk, Russia
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Absrtact – We conduct the qualitative analysis of differential equations describing 
the rotation of a dynamically asymmetric rigid body around a fixed point. The body 
is enclosed in a spherical shell, to which one ball and one disk adjoin. The motion 
of the body by inertia and under the action of potential forces is considered. It is 
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established that in the absence of external forces, the differential equations have 
the families of solutions corresponding to the equilibrium positions of the body, 
and in the case of potential forces there exist manifolds of pendulum motions. For 
a number of the solutions, the necessary and sufficient conditions of the Lyapunov 
stability are derived.

Keywords: rigid body, spherical suspension, nonholonomic joint, stationary 
motions, stability
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