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Рассматривается совместное действие кручения и кругового сдвига в не-
линейно-упругом несжимаемом полом круговом цилиндре. Решение по-
лучено для произвольного упругого потенциала, являющегося функцией 
только первого инварианта левого тензора деформации Коши–Грина 
(обобщенный неогуковский материал). Для материала Гента получено 
аналитическое решение в замкнутом виде. Предложена конструкция 
поворотного демпфера с трением, основанная на полученном решении. 
Приведены формулы для диссипации кинетической энергии за счет 
трения на цилиндрических поверхностях трубы. Для материала, прояв-
ляющего падение упругого модуля при деформировании, получено чис-
ленное решение, которое сравнивается с экспериментальными результа-
тами.
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Введение. Комбинация различных видов сдвиговой деформации в осе-
симметричных цилиндрических телах, а именно кручения, продольного 
(или антиплоского) сдвига, кругового (или азимутального) сдвига, пред-
ставляет собой интересную проблему нелинейной теории упругости, ко-
торой посвящен ряд публикаций [1–10]. Любая комбинация этих сдвигов 
есть изохорная деформация. Из упомянутых выше сдвигов только простое 
кручение может быть реализовано в произвольном нелинейно-упругом не-
сжимаемом материале [11, 12]. Для остальных есть решения в тех или иных 
подклассах упругих материалов.

В работе [3] получено аналитическое решение для комбинации кру-
чения с круговым сдвигом в обобщенном степенном неогуковском теле 
с упругим потенциалом [13]:
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здесь I1 = tr B есть первый инвариант левого тензора деформации Коши–Гри-
на B = FFT, F тензор градиента деформации; m представляет собой аналог мо-
дуля сдвига в линейной теории упругости, b, n – материальные константы.

В работе [10] та же комбинация сдвиговых деформаций была исследована 
для материала Муни–Ривлина с упругим потенциалом:

	 ( ) ( ) ,1 1 2 23 3W С I С I= − + −  tr tr ,2 2
22I = −B B 	

где C1, C2 – материальные константы.
Также стоит упомянуть публикацию [4], в которой эта проблема рассмот-

рена для сжимаемого материала.
В настоящей публикации рассмотрена задача о комбинации кручения 

с круговым сдвигом для класса гиперупругих материалов с упругим потенци-
алом, зависящим только от I1. Найдено общее решение проблемы в том смыс-
ле, что вычисление перемещений и напряжений в теле сведено к решению 
алгебраического уравнения и вычислению однократных интегралов.

Решение в замкнутом виде получено для одного частного случая – матери-
ала Гента [14] с упругим потенциалом:
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где Jm = I1
max – 3 – константа материала, I1

max – предельное значение I1. Мате-
риал Гента это простейшая феноменологическая модель, которая основана на 
концепте ограниченной растяжимости полимерных цепей (см. [15]). В этой 
модели функция плотности энергии деформации имеет сингулярность при  
I1 → I1

max. В пределе I1
max → ∞ модель Гента переходит в неогуковскую модель. 

Здесь следует упомянуть две публикации [16, 17], в которых для несжимаемо-
го материала с ограниченной растяжимостью полимерных цепей кручение и 
круговой сдвиг были рассмотрены по отдельности. Также отметим, что ком-
бинация кругового и антиплоского сдвигов исследовалась в контексте вяз-
копластического течения в [18].

1. Кручение с круговым сдвигом. Для полого цилиндра с внутренним ради-
усом R0, внешним радиусом R1 и длиной L комбинация кручения с круговым 
сдвигом описывается уравнениями:

	 ( ), , , ,r R R Z z Z= q = Q + Y = 	 (1.1)

которые связывают цилиндрические координаты точки материала в неде-
формированном состоянии (R, Q, Z ) с координатами (r, q, z) в деформиро-
ванном состоянии. Если Y(R, Z) = Y(Z), то (1.1) описывает кручение, если 
Y(R, Z) = Y(R), то (1.1) описывает круговой сдвиг. Мы не накладываем ка-
ких-либо ограничений на вид функции Y(R, Z), рассматривая действие на 
тело комбинации кручения и кругового сдвига.
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Для кинематики (1.1) координатное представление тензора деформации 
B есть
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Здесь и далее введены обозначения Yr = ∂Y/∂R = ∂Y/∂r, Yz = ∂Y/∂Z = ∂Y/∂z.
Инварианты тензора B имеют вид:

	 ( ) ( ) .22
1 23 3 r zI I r r− = − = Y + Y 	 (1.2)

Для упругого потенциала, зависящего только от инварианта I1, тензор 
напряжений Коши s может быть выражен равенством [19]:
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s

	 ( )= −1 3W W I , ( )1 13 .w w I W I= − = ∂ ∂ 	 (1.3)

Здесь I единичный тензор, p скалярная функция, служащая для удовлетво-
рения ограничения несжимаемости.

Согласно (1.3) компоненты тензора напряжений есть
	 , , ,0 2 2rz r r z zwr wrq qs = s = Y s = Y

	 , [( ) ( ) ] .2 22 2rr zz rr r zp w r r wqqs = s = − + s = s + Y + Y 	 (1.4)

Компоненты уравнения равновесия ∇ ⋅ = 0s  есть
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Здесь введены обозначения Yrr = ∂2Y/∂R2 = ∂2Y/∂r2, Yzz = ∂2Y/∂Z2 = ∂2Y/∂z2, 
wr = ∂w/∂R = ∂w/∂r, wz = ∂w/∂Z = ∂w/∂z.

Третье уравнение в (1.5) говорит о том, что радиальное напряжение srr не 
зависит от продольной координаты z. Далее, поскольку правая часть первого 
уравнения в (1.5) есть функция только инварианта I1, то этот инвариант также 
не зависит от z, то есть ∂I1/∂z = 0 и также wz = 0. Следовательно, из (1.2) имеем 
(Yr)2 + (Yz)2 = f (r), где f(r) есть некоторая функция, и по [20]

	 , ( ), const .z L rY = a + y y = y a = 	 (1.6)
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Величина a  ≥  0 определяет величину кручения. Здесь полагается, что 
функция y(r) монотонна, и направление отсчета угловой координаты выбра-
но так, что dy/dr  ≥ 0.

Тогда по (1.2)
	 ( ) ( ) ( ) ( ) ,22 2 2

1 3 r zI r r r r L d dr′ ′− = Y + Y = y + a y = y 	 (1.7)
и w = w(I1 – 3) есть функция одной только координаты r, так что второе урав-
нение в (1.5) принимает вид:

	 ln( ) .
33

0rw d wr
r w dr

′′ ′y y
+ + = =

′y
	

Откуда

	 ( )const, .3
1 3wr K w w I′y = = = − 	 (1.8)

В частности, для неогуковского материала (материала Трелоара) с W = 
= (m/2)(I1 – 3) и w = ∂W/∂I1 = m/2 из формулы (1.8) следует, что y′ ~ r–3; стоит от-
метить, что аналогичный результат имеет место для материала Муни–Ривли-
на (см. [10]). То есть искажение материальных волокон из-за кругового сдвига 
зависит в большей степени от вида функциональной зависимости W = W(I1), 
но не от присутствия в упругом законе членов, зависящих от инварианта I2.

Учитывая (1.7), уравнение (1.8) представляет собой алгебраическое урав-
нение относительно функции y′(r). Константа интегрирования K имеет раз-
мерность силы и определяется граничными условиями. Таким образом, пол-
ное решение задачи сводится к решению алгебраического уравнения (1.8) 
относительно y′ и отысканию интеграла, чтобы получить y(r) и построить 
поле перемещений по формуле (1.6); а также к отысканию интеграла в первом 
уравнении системы (1.5), чтобы найти функцию p и определить напряжения.

Отметим, что, согласно (1.6), Y линейно зависит от координаты z, что сов-
падает со случаем простого кручения. Согласно (1.7), ∂I1/∂z = 0 и, следова-
тельно, упругая энергия не зависит от продольной координаты. Кроме того, 
∂p/∂z = 0 и напряженное состояние зависит только от радиальной координаты 
r. Такие же результаты следуют для материала Муни–Ривлина (см. [10]), для 
которого, однако, srz ≠ 0.

Отметим, что из (1.8) и (1.4) следует, что

	 2 2
1 1 2 const,r sr R T Kqs = = = 	 (1.9)

где ( )1 1 0s rT Rq= s ≥  есть силовая характеристика приложенного кругового 
сдвига. Тогда

	 .
2

1
1r s

R
T

rq
 

s =  
 

	 (1.10)

Последнее равенство, задающее распределение касательного напряжения 
sr q, представляет собой универсальное соотношение для наложения кругового 
сдвига на деформацию кручения. То есть оно верно при любом упругом по-
тенциале вида W(I1). Это выражение также не зависит от величины деформа-
ции кручения и верно, в том числе, и для чистого кругового сдвига.



	 КРУЧЕНИЕ С КРУГОВЫМ СДВИГОМ...� 213

2. Частный случай (материал Гента). Для упругого потенциала Гента

	 ln 1 3
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согласно (1.7) имеем:
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Тогда из (1.8) и (1.9) с учетом (2.1) следует квадратное уравнение:
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Здесь введена новая безразмерная переменная:
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Корень уравнения (2.2) есть

	 .2d
s s q

d
y

= − + +
D

	 (2.3)

Проинтегрируем (2.3):
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	 (2.4)
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Если перейти к пределу Jm → ∞ в формуле (2.4), используя правило Лопита-
ля имеем ( )( )( )lim ( ) ( ) .1 11 2 1 1

m
s

J
r R T

→∞
 y − y = m − D   Это выражение совпадает 

с выражением для материала Трелоара, которое можно получить, интегрируя 
(1.8) с учетом (1.9).

В решении (2.4) фигурируют кинематическая характеристика кручения 
(угол a) и силовая характеристика кругового сдвига – усилие Ts1 = sr q(R1).

Преобразуем первое уравнение равновесия в (1.5) с учетом (1.6), (2.1), (2.2) 
и (2.3):
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и проинтегрируем:
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3. Начально-краевая задача. Поворотный демпфер. Поворотные демпферы 
служат для рассеяния кинетической энергии колебаний и вибраций в меха-
низмах, которые совершают поворотные движения, в том числе в автомоби-
лях и промышленных механизмах. Рассеяние механической энергии в таких 
устройствах часто происходит за счет трения. В этом разделе мы предлагаем 
конструкцию поворотного демпфера с трением и исследуем ее на основе по-
лученного в предыдущих разделах решения.

Итак, пусть деформируемый элемент демпфера исполнен так, как пока-
зано на рис. 1.

Обод z = 0, r = R1 жестко закреплен, обод z = L, r = R1 подвижен, испытывает 
поворот на угол a ≥ 0. Движение материала вдоль образующей исключено. На 
цилиндрических поверхностях r  = R0 и r  = R1 задан закон сухого трения. Это 
подразумевает выполнение следующих краевых условий:

Рис. 1. Схема нагружения деформируемого элемента демпфера.
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где k0 и k1 известные коэффициенты трения скольжения на цилиндрических 
поверхностях. Тогда srr(R1) = –Ts1/k1, и, по (1.10), srr(R0) = –Ts1/(k0D0), D0 = 
= (R0/R1)2.

3.1. Материал Гента. Аналитическое решение. Для материала Гента по (2.5) 
имеем уравнение:
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которое по заданной величине угла кручения a позволяет установить Ts1 (как 
корень нелинейного алгебраического уравнения).

Удельная по объему материала безразмерная механическая энергия, затра-
ченная на упругое деформирование:

	

( ) ( ) ( )

( )
( )

( ) ( )( )

ln
( )

( )
ln

ln ln ln

1 1

0 0

0

1

0

2

2 2 2 2 2 2
1 0 1 0 1 00 0

1
2 2
1 0

22 2
1

0 1

0
0 0 0 0 0

0 00

1 2

3
1

4
1

2 1

1
1 2 1

2 1

R RL
el

R R

R

m

m
R

m

m

m

E
Wrdrd dz Wrdr

L R R L R R R R

J I
rdr

JR R

d d R LJ
d

J

J
c c J J

c c

π

D

= q = =
πm − πm − m −

− = − = −  

 D y D + D a
 = − D =

− D   

D   = D D + − + − D + −  − D   

∫ ∫ ∫ ∫

∫

∫

,
   
  

   

	 ( ) ( )
( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
ln ln .

11 1

2 2
1 1

1 42 1 4
1 1

2 1 4

1

2

cc c

c c

c c
J d

−

ℜ −ξ

ℜ + ξ − + ℜ − ξℜ − ξ
ξ = ℜ − ξ ξ = +

ℜ − ξ ℜ + ξ
∫ 	

Удельная по объему материала безразмерная энергия, затраченная на ра-
боту против сил трения:
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Крутящий момент, который нагружает конструкцию, рассчитывается по 
формуле:
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+
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	 (3.1)
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3.2. Материал с разупрочнением. Численное решение. Сопоставление с экспе-
риментальными данными. Описываемая в статье схема деформирования реа-
лизована в виде конструкции поворотного демпфера (рис. 2).

Детали 1, 2, 4 (рис. 2) изготовлены методом 3D печати из полиэтилен-
терефталат-гликоля (филамент – нить диаметром 1.75 мм производства 
Bestfilament, РФ) с помощью 3D-принтера Designer X PICASO 3D (РФ) по 
технологии послойного нанесения расплавленного материала FDM (Fused 
Deposition Modeling). Параметры печати соответствовали следующим пока-
зателям: сопло 0.5мм, высота слоя 0.25мм, заполнение 35%, температура соп-
ла 240 °C, температура стола 60 °C. В качестве материала основного демп-
фирующего элемента (3) применялся полиуретан твердостью по Шору А83. 
Внешний диаметр демпфирующего элемента 22.2 мм, внутренний диаметр 
10.5 мм. Внутреннее отверстие в демпфирующем элементе (3) получено ме-
тодом высечки. Полная длина демпфирующего элемента 62 мм (расстояние 
между захватами 42 мм). Центральная втулка (1) представляет собой сплош-
ной цилиндр длиной 150 мм и диаметром 10.5 мм. Наружная обойма длиной 
42 мм имеет внешний диаметр 32 мм и внутренний диаметр 22.2 мм. Захваты 
(4) выполнены разъемными. На внутренней поверхности захватов выполнены 
шлицы для исключения проскальзывания (отмечены штриховкой на рис. 2). 
Захваты обжимают демпфирующий элемент (3). Внешняя поверхность захва-
тов выполнена в виде шестигранников под ключ 24 мм. Фотография элемен-
тов демпфера представлена на рис. 3.

После сборки конструкции проведен замер крутящего момента на ключе 
в зависимости от угла поворота, экспериментальные данные представлены 
в виде маркеров на рис. 5. Измерение крутящего момента проведено с исполь-
зованием электронного динамометрического ключа MXITA со шкалой изме-
рения 2–200 Н · м, измерение угла поворота проведено с помощью кругового 
транспортира со шкалой измерения 360°.

Для описания упругого поведения полиуретана А83 проведены испытания 
на простое растяжение. Использован образец длиной 240 мм и диаметром 

Рис. 2. Конструкция поворотного демпфера с трением: 1 – центральная втулка, 2 – на-
ружная обойма, 3 – упругий элемент, 4 – захваты.
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Рис. 3. Элементы конструкции поворотного демпфера с трением: 1 – центральная втулка, 
2 – наружная обойма, 3 – упругий элемент, 4 – захваты.

Рис. 4. Простое растяжение, s11 в МПа. Маркеры – экспериментальные данные для по-
лиуретана A83 (инженерные напряжения). Модель Гента с параметрами E = 3m = 17 МПа, 
Jm = 16 (данные для полиуретана A90 по [21]). Модель (3.2) с параметрами E0 = 17 МПа, 
E1 = 1 МПа, b = 0.29, I1a – 3 = 0.107.
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22.2 мм. Испытание проведено при комнатной температуре на универсаль-
ной испытательной машине AG-Xplus 250kN (Shimadzu, Япония) при скоро-
сти движения траверсы 10 мм/мин. В отличие от экспериментальных данных 
[21] для полиуретана с твердостью по Шору A90, используемый нами образец 
проявляет заметное разупрочнение (см. рис. 4). Это может быть вызвано эф-
фектом Муллинса [22], связанным с накоплением повреждений в материале 
вследствие предварительного деформирования. Материал был использован 
в том состоянии, в котором он поставлен.

Для описания упругого поведения материала с разупрочнением использо-
вана следующая модель:

	
( ) ( )

( ) ( )
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Здесь E0, E1, b, I1a – константы материала.
Для простого растяжения имеем по известной формуле:
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где l – относительное удлинение образца.
На рис. 4 приведен график (3.3) в сравнении с экспериментальными 

данными при следующих значениях параметров материала: E0 = 17 МПа, 
E1 = 1 МПа, b = 0.29, I1a – 3 = 0.107.

Упругая модель (3.2) использована для расчета зависимости крутящего мо-
мента, приложенного к поворотному демпферу, от угла поворота a. Исполь-
зован следующий алгоритм численного решения:

1) задано q =s =
1

1r sr R
T ;

2) задано начальное приближение a;
3) по (1.8) и (1.9) имеем уравнение 2wr3y′ = R1

2Ts1, где

	  erfc ln0 11 1

1 1

3
6 12 3a

E EE IdW
w

dI I
− − = = + b − 

; 

по (1.7) I1 – 3 = (r y′)2 + (ar/L)2; это алгебраическое уравнение решается чис-
ленно относительно y′ в узловых точках по координате r;

4) численно интегрируем первое уравнение (1.5)

	  ( ) ( )2 22rrd
r r r L w

dr
s  ′= y + a 
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с граничным условием srr(R1) = –Ts1/k1; получаем значение srr(R0), которое 
сравниваем с краевым условием srr(R0) = –Ts1(R1/R0)2/k0; если с заданной 
точностью краевое условие не выполнено, то корректируем значение a и воз-
вращаемся в пункт 3.

Шаги 1– 4 повторяются с увеличивающимся значением sr q|r = R1
 = Ts1.

На рис. 5 приведен результат численного решения задачи по указанному 
алгоритму для упругой модели (3.2) с параметрами E0 = 17 МПа, E1 = 1 МПа,  
b = 0.29, I1a – 3 = 0.107. Коэффициенты трения полиуретана по материалу втул-
ки (1) и обоймы (2) (см. рис. 2) – полиэтилентерефталат-гликолю – определе-
ны экспериментально и составляют k0 = k1 = 0.35. Продольный размер дефор-
мируемого материала принят равным расстоянию между захватами, L = 42 мм.

Качественно решение согласуется с экспериментальными данными. Неко-
торое несовпадение может быть обусловлено неидеальным контактом дефор-
мируемого материала с оснасткой на поверхностях трения, а также изменени-
ем свойств материала после пробития центрального отверстия в цилиндриче-
ском образце. Для сравнения приведены расчетные данные по модели Гента 
с параметрами E = 3m = 17 МПа, Jm = 16 (данные для полиуретана A90 по [21]), 
которые получены по аналитическому решению (3.1).

Исследование выполнено в рамках госзадания ХФИЦ ДВО РАН.

Рис. 5. Крутящий момент M [Н · м] при нагружении поворотного демпфера углом пово-
рота a (в градусах). Маркеры – экспериментальные данные. Сплошная линия – числен-
но-аналитический расчет по упругой модели (3.2). Пунктирная линия – аналитический 
расчет для материала Гента с параметрами E = 3m = 17 МПа, Jm = 16.
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TORSION AND CIRCULAR SHEAR COUPLING IN NONLINEAR-
ELASTIC HOLLOW CYLINDER

G. M. Sevastyanov a, *, O. N. Komarova, **, A. V. Popov a, ***
aInstitute of Machinery and Metallurgy FEB RAS, Komsomolsk-on-Amur, Russia

*E-mail: akela.86@mail.ru, **e-mail: olegnikolaevitsch@rambler.ru,  
***e-mail: popov.av@live.com

Abstract – Combined torsional and circular shear of an incompressible nonlinear-
elastic right-circular hollow cylinder is studied. A solution to the problem is 
obtained for an arbitrary elastic potential depending on the first invariant of the 
left Cauchy – Green deformation tensor solely (generalized neo-Hookean solid). 
For the Gent material, an analytical solution in closed form is obtained. A rotary 
damper design based on the obtained solution is proposed. Formulas for the 
dissipation of kinetic energy due to friction on the cylindrical surfaces of the pipe 
are given. For a strain softening material, a numerical solution is obtained, which 
is compared with experimental results.

Keywords: nonlinear elasticity, torsion, circular shear, Gent material, rotary 
damper
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