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Предложена методика идентификации масштабного параметра гради-
ентной теории упругости на основе известных экспериментальных дан-
ных по влиянию размеров поверхностных коррозионных дефектов на 
параметры сопротивления усталости сталей и алюминиевых сплавов. 
Показана возможность естественного описания снижения коэффици-
ента концентрации напряжений вблизи малоразмерных коррозионных 
дефектов, которые в данной работе моделируются в виде полуэллипсо-
идальных поверхностных полостей. Идентифицированные значения 
масштабных параметров лежат в диапазоне 20–230 мкм.
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1. Введение. Присутствие коррозионных дефектов на поверхности ме-
таллов приводит к значительному снижению их статической и циклической 
прочности, причем существенную роль играют как относительные, так и 
абсолютные размеры дефектов. Влияние относительных размеров на уро-
вень концентрации напряжений, в целом, хорошо изучено. Коррозионные 
дефекты обычно моделируются в виде полуэллипсоидальных поверхност-
ных полостей, а оценка концентрации напряжений следует из аналитиче-
ских или численных решений соответствующей задачи классической тео-
рии упругости [1–4]. Такие решения являются основой для современных 
стандартов по оценке статической прочности трубопроводов с коррозией, 
в которых используются регрессионные зависимости для расчета уровня 
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концентрации напряжений с учетом относительных характерных размеров де-
фектов, плотности их расположения, ориентации и относительной глубины 
по отношению к толщине стенки конcтрукции [5]. 

Влияние абсолютных размеров коррозионных дефектов в значительной 
степени проявляется в испытаниях на сопротивление усталости [6, 7]. В про-
цессе циклического нагружения коррозионные полости становятся центра-
ми зарождения поверхностных трещин, скорость развития которых опреде-
ляет усталостную долговечность металла [8, 9]. Для прогноза числа циклов до 
разрушения для образцов с коррозией используются экспериментальные или 
расчетные данные по характерным (абсолютным) размерам поверхностных 
дефектов и по скорости роста трещин усталости в металле, не подверженном 
коррозии. При этом предполагается, что начальный размер трещин соответ-
ствует среднему размеру коррозионных полостей, либо вводятся дополни-
тельные гипотезы о характере зарождения трещин на поверхностных дефек-
тах с учетом их геометрии и реализующейся концентрации [8, 10]. При этом 
для малоразмерных поверхностных дефектов возникает стандартная проблема 
завышения числа циклов до разрушения, которая связана с использованием 
линейно-упругой механики разрушения (ЛУМР) [11, 7]. Одним из подходов, 
направленных на решение этой проблемы, является введение номинальной 
длины трещин a0, которые по предположению всегда присутствуют в матери-
але и которые задаются пропорциональными масштабному параметру мате-
риала в испытаниях на сопротивление усталости a0 = DK0

2/(psR
2) (DK0 – крити-

ческая амплитуда коэффициента интенсивности напряжений, при которой 
начинается рост усталостных трещин, sR – предел выносливости материала) 
[12]. Для коррозионных дефектов меньших a0 расчет ведется по амплитуде 
номинальных напряжений и диаграмме усталости, для дефектов, характерные 
размеры которых превышают a0, привлекаются модели, основанные на ЛУМР 
и законе Пэриса [9]. Также существуют модели, в которых величина a0 добав-
ляется по умолчанию к фактическому характерному размеру коррозионных 
дефектов, присутствующих в материале [9, 11]. 

В настоящее время накоплено большое количество экспериментальных 
данных по влиянию абсолютных размеров изолированных и множественных 
поверхностных дефектов на сопротивление усталости сплавов [11, 13–15]. 
Возникающие размерные эффекты с достаточно хорошей степенью точно-
сти были описаны на основе указанных выше теоретических подходов, хотя 
проблема корректного описания многоцикловой усталости и режима зарож
дения и развития “коротких трещин” остается актуальной [7]. 

В настоящей работе предлагается использовать альтернативный подход 
к описанию размерного эффекта для усталостной прочности металлов, содер-
жащих поверхностные дефекты. Для этого рассматривается решение задачи о 
поверхностной полуэллипсоидальной полости, построенное численно в рам-
ках градиентной теории упругости (ГТУ) [16]. Предлагаемое решение являет-
ся обобщением хорошо известных классических решений, которые широко 
используются при оценке концентрации напряжений вблизи коррозионных 
полостей [1–3]. В данной работе рассматривается упрощенный вариант ГТУ 
с определяющими соотношениями Айфантиса, содержащими единственный 
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дополнительный масштабный параметр [17]. Присутствие этого параметра 
позволяет описать зависимость коэффициента концентрации напряжений 
от абсолютных размеров дефекта. Идентификация масштабного параметра 
проводится на основе известных экспериментальных данных по зависимо-
сти предела ограниченной выносливости сталей и алюминиевых сплавов от 
размера поверхностных дефектов. Ранее, применение рассматриваемого ва-
рианта ГТУ для описания размерного эффекта прочности в материалах, со-
держащих трещины и острые вырезы различного размера, было представлено 
в работах [18–21]. Проблемы применения нелокальных и градиентных теорий 
и проблемы идентификация их масштабных параметров на основе испытаний 
образцов с трещинами рассматривались в работах [22, 23–26]. Теоретическая 
оценка масштабных параметров ГТУ для различных типов неоднородных сред 
была представлена, например, в работах [27, 28]. 

В настоящей работе идентификация масштабного параметра проводит-
ся для образцов с гладкой геометрией концентраторов, которые не приводят 
к возникновению сингулярных решений в классической теории упругости. 
Тем не менее, в задачах многоцикловой усталости металлов для подобных 
концентраторов возникают существенные масштабные эффекты, моделиро-
вание которых может быть реализовано в рамках ГТУ и концепции концен-
трации напряжений [24, 21].

2. Градиентная теория упругости. Плотность энергии деформаций изотроп-
ного материала в упрощенной ГТУ в форме Айфантиса может быть представ-
лена в следующем виде:

	 , , ,( , ) ,21
2ij ij k ijkl ij kl ijlm ij k lm kW C l Ce e = e e + e e 	 (2.1)

где eij = (ui, j + uj,i)/2 – деформации, eij,k – тензор градиентов деформаций (запя-
той обозначается производная, по повторяющимся индексам предполагается 
суммирование), ( )2ijkl ij kl il jk ik jlC = ld d + m d d + d d  – тензор модулей упругости, 
l, m – параметры Ламе, l – дополнительный масштабный параметр теории. 
При l  = 0 получаем плотность энергии классической теории упругости. Связь 
параметра l в ГТУ с масштабными параметрами, которые могут быть введены 
в механике разрушения, обсуждалась в работах [18, 21].

Определяющие соотношения вводятся для тензора напряжений tij, а также 
для тензора градиентных (моментных) напряжений mijk:	

	 ,2ij ijkl kl pp ij ij
ij

W
C

∂
t = = e = le d + me

∂e
	 (2.2)

	 , , ,
,

( ).2 2 2ijk ij k pp k ij ij k
ij k

W
l l

∂
m = = t = le d + me

∂e
	 (2.3)

Постановка краевой задачи ГТУ может быть получена на основе вариаци-
онного подхода в следующем виде [16, 29]:
	 , , ,0ij j ixs = ∈ W 	 (2.4)

	    ,  ,илиi i i i it t u u x= = ∈∂W 	 (2.5)
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	 ,    , ,илиi i i j j i im m u n g x= = ∈∂W 	 (2.6)

	     ,   ,илиi i i i is s u v x= = ∈∂∂W 	 (2.7)
где W, ∂W, ∂∂W – это объем, поверхность и ребра рассматриваемой области; 
предполагается отсутствие объемных сил; величины с чертой обозначают за-
данные граничные условия на соответствующих частях поверхности ∂W и реб
рах ∂∂W; sij = tij – mijk,k – тензор полных напряжений; вектор напряжений ti, 
вектор моментных напряжений mi и вектор погонных сил на ребрах si опреде-
ляются следующими выражениями:
	 ( ), ,2i ij j ijk l jl j l k it n n n n Hm= s − m d − − 	  (2.8)

	 ,i ijk j km n n= m 	 (2.9)

	 ,i ijk j ks v n = m  	 (2.10)

где H = (–1/2)ni, j(dij – ninj) – средняя кривизна поверхности, скобки […] 
обозначают разность стоящих в них величин, вычисляемых на частях поверх-
ности ∂W, образующих данное ребро ∂∂W, vj – ко-нормаль к данному ребру 
∂∂W, которая ориентирована по нормали к нему и параллельно рассматривае
мой части поверхности.

Заметим, что на поверхностях тела в ГТУ необходимо задавать вектор 
напряжений ti (2.8), который определяет заданную поверхностную нагрузку – 
как и в классической теории упругости. При этом также требуется задавать 
вектор моментных напряжений (2.9), который практически всегда задается 
нулевым (mi = 0), так как для стандартных инженерных задач нет необходи-
мости предполагать, что на поверхности действуют некоторые силы, совер-
шающие работу на нормальных градиентах от перемещений (условие типа 
стесненного, упрочненного слоя [30]). Реберные усилия или перемещения 
могут быть заданы в ГТУ в явном виде (2.7), (2.10). Однако очевидно, что та-
кая необходимость возникает далеко не всегда. Например, для исследования 
поведения решения вблизи нагруженных ребер такие условия использовались 
в работе [31]. В стандартных инженерных задачах обычно используются усло-
вия по отсутствию реберных усилий (si = 0). Вариант определяющих соотно-
шений ГТУ, которые обеспечивает отсутствие дополнительных граничных 
условий на реберные усилия, был предложен в недавней работе [32].

Примеры аналитических решений ГТУ для классических задач о концен-
траторах напряжений в виде отверстия, острого выреза, сосредоточенной на-
грузки и т.д. рассматривались в работах [33–37]. В настоящей работе строятся 
численные решения ГТУ для задачи о концентрации напряжений вблизи по-
верхностной полуэллипсоидальной полости. Для построения этих решений 
используется смешанный метод конечных элементов (МКЭ), предложенный 
и реализованный в ГТУ в работах [21, 38, 39]. 

3. Модель изолированного поверхностного полуэллипсоидального дефек-
та. В  качестве модели поверхностного коррозионного дефекта рассмат-
риваем призматический фрагмент (| x | ≤ A, | y | ≤ B, 0 ≤ z ≤ H), содержащий 
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полуэллипсоидальную полость с полуосями a/2, b/2 и h. Таким образом, раз-
меры дефекта в плоскости определяются значениями a и b, глубина дефекта – 
h. Размеры фрагмента задаются достаточно большими (A = 2a, B = 2b, H = 4h) 
для возможности исследования концентрации напряжений без учета влияния 
внешних поверхностей. Расчеты проводятся для случая одноосного растяже-
ния вдоль оси х. Соответствующие граничные условия задаются с учетом сим-
метрии задачи для 1/4 части фрагмента (см. рис. 1а):
	 :   ,   ,     ,1 2 3 1 2 30 0x A t t t t m m m= = = = = = =

	 , ,:   ,    ,1 2 1 3 10 0 0x u u u= = = =

	 , ,:   ,   ,2 1 2 3 20 0 0y u u u= = = =

где используются обобщенные условия симметрии ГТУ, которые в явном виде 
определяют нулевое значение нормальной компоненты перемещений, а также 
нулевые нормальные градиенты от касательных компонент перемещений на 
плоскости симметрии [36]; на остальных поверхностях фрагмента задаются 
условия свободной поверхности (ti = 0, mi = 0). Реберные усилия также отсут-
ствуют во всей модели. 

Численные решения строятся в системе Comsol в модуле Weak Form PDE. 
В расчете используются тетраэдральные элементы с аппроксимацией в виде 
полиномов Эрмита третьего порядка для перемещений, градиентов переме-
щений и дополнительных множителе Лагранжа, которые вводятся в смешан-
ном методе конечных элементов в ГТУ [38–39, 21]. Для уточнения решения 
вблизи полости задается сгущение конечно-элементной сетки (рис. 1а). 

По результатам расчета определяется напряженно-деформированное со-
стояние фрагмента и распределение максимальных главных напряжений tI 
(рис. 1б) и эквивалентных напряжений по Мизесу tэ, вычисляемых на осно-
ве стандартных соотношений для тензора tij, входящего в определяющие 

(а) (б)

Рис. 1. Модель полуэллипсоидального поверхностного дефекта, а – геометрия модели и 
пример конечно-элементной сетки. Фиолетовым цветом показана поверхность полости, 
б – пример результатов расчетов для концентрации максимальных главных напряжений 
tI /t  в условиях одноосного растяжения.
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соотношения модели (2). Коэффициент концентрации напряжений вычисля-
ется как отношение максимального значения максимальных главных напря-
жений или напряжений по Мизесу, реализующихся во фрагменте, к заданной 
нагрузке: Kt = (tI)max / t или Kt,э = (tэ)max / t . По результатам расчетов устанавли-
вается зависимость коэффициента концентрации от геометрических разме-
ров дефекта и масштабного параметра материала (рис. 2). Эти зависимости 
используются для обработки экспериментальных данных. 

Размер сетки в конечно-элементных моделях выбирался по условиям схо-
димости численного решения относительно интересующих нас напряжений 
tij. Дальнейшее уменьшение размера сетки позволяет уточнить значения ко-
эффициентов концентрации не более чем на 1%. Точность построенный чис-
ленных решений может быть проверена и относительно выполнения задавае-
мых граничных условий. В частности, интерес могут представлять некласси-
ческие граничные условия на ребрах, которые формулируются относительно 
комбинаций градиентных напряжений (2.7), (2.10), и поэтому их выполнение 
может вызывать некоторые сложности, связанные с численным дифференци-
рованием функций формы и вычислением значений моментных напряжений 
на острой кромке на поверхности полости. Тем не менее и эти граничные 
условия выполняются в построенных решениях достаточно точно, что проил-
люстрировано на рис. 3. Здесь показано распределение реберных усилий (si) 
вдоль контура полусферической полости. Эти усилия равны нулю с точностью 
до возникающей погрешности численного решения. Для сравнения, на рис. 3 
также показано значение моментных усилий m1 = m111, которые принимают 
нулевое значение только в начальной точке контура, где нормаль к поверх-
ности полости оказывается параллельна оси x. Все представленные величины 
на рис. 3 нормированы на максимальное значение моментных напряжений, 
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Рис. 2. Примеры расчетов, (а) – изменение концентрации напряжений вдоль контура по-
лусфероидальной полости (a = b = 2h) для различных соотношений h/l, (б) – зависимость 
коэффициента концентрации напряжений от отношения h/l для различной геометрии 
полости (b/h = 2).
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которые реализуются в рассматриваемой задаче (mmax = (m113)max). На рис. 3 
видно, что величина погрешности в выполнении граничных условий относи-
тельно указанных неклассических усилий не превышает ~ 4% от mmax. Даль-
нейшее уточнение решения для моментных напряжений может быть получено 
с использованием более мелкой конечно-элементной сетки либо с использо-
ванием функций формы более высокого порядка. Однако это уточнение пред-
ставляется излишним (и достаточно ресурсоемким) при анализе напряженно-
го состояния в терминах тензора напряжений tij.

4. Методика идентификации масштабного параметра. Как видно из рис. 2, 
величина масштабного параметра, который в рамках ГТУ входит в определяю-
щие соотношения и по предположению является характеристикой материала, 
существенно влияет на уровень концентрации напряжений. Максимальная 
концентрация ожидаемо реализуется на плоскости симметрии модели, пер-
пендикулярной действующей нагрузке (рис. 2а, s/smax = 1). На этом рисунке и 
далее на аналогичных рисунках расстояние вдоль контура полости отсчитыва-
ется на поверхности фрагмента от точки x = a/2, y = 0, z = H (s = 0) до точки 
x = 0, y = b/2, z = H (s = smax). Для малого значения масштабного парамет-
ра (h/l = 100) в результатах, представленных на рис. 2а, реализуется решение 
близкое к классическому с максимальной концентрацией напряжений. При 
увеличении масштабного параметра, концентрация снижается, и при h/l < 1 
материал перестает “чувствовать” присутствие концентратора и находится в 
состоянии, близком к однородному одноосному растяжению. Такие эффекты 
хорошо известны в решениях ГТУ [33, 37], и они связаны со сглаживающим 
характером операторов типа Гельмгольца, которые присутствуют в уравнени-
ях равновесия ГТУ, записываемых относительно перемещений [40, 41]. 

Возникающий масштабный эффект для концентрации напряжений в за-
даче с поверхностной полостью проиллюстрирован на рис. 2б. Здесь показана 
зависимость коэффициента концентрации от относительных и абсолютных 

   
 

Рис. 3. Оценка точности выполнения граничных условий по отсутствию реберных усилий 
(si) на острой кромке (ребре) поверхностной полости.
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размеров полости. Относительные размеры, как и в классическом решении, 
определяют собственную геометрию полости – ее вытянутость, относительную 
глубину. Эти характеристики входят в стандартные соотношения для оценки 
концентрации напряжений вблизи коррозионных полостей [3–5]. Абсолютные 
размеры полости начинают влиять на решение ГТУ (на распределение напря-
жений, на значение коэффициента концентрации напряжений) благодаря 
присутствию в определяющих соотношениях модели масштабного параметра 
l. Так как этот параметр l является размерным, то и все остальные размеры 
в решении могут быть вычислены в долях l. Соответственно, представленная 
зависимость концентрации от отношения h/l на рис. 2б определяет зависи-
мость решения для Kt от абсолютного размера h, если известно значение l. 

Таким образом, идентификация масштабного параметра ГТУ возможна, 
если в эксперименте установлена зависимость коэффициента концентрации 
от абсолютных и относительных размеров полости (полостей), присутствую-
щих на поверхности испытываемых образцов. Задача идентификации – нало-
жить расчетные данные (рис. 2б) и соответствующие экспериментальные дан-
ные. При этом необходимо добиться, чтобы единственное значение масштаб-
ного параметра с удовлетворительной точностью обеспечивало соответствие 
расчета и эксперимента для разных размеров полостей, то есть желательна 
проверка нескольких экспериментальных точек на графиках, представлен-
ных на рис. 2б для разных размеров и формы поверхностных дефектов. Упру-
гие константы материала задаются стандартными для данных материалов. 
В частности, далее для сталей и алюминиевых сплавов используются значения 
модуля Юнга 200 ГПа и 70 ГПа (эти значения, вообще говоря, не влияют на 
уровень концентрации в рассматриваемых задачах) и коэффициент Пуассона 
0.3 и 0.33 соответственно.

Аналогичные подходы для идентификации параметров неклассических 
нелокальных и градиентных теорий на основе экспериментальных данных 
по влиянию размерных (масштабных) эффектов активно развиваются в по-
следнее время. При этом используются эксперименты с образцами, содержа-
щими различные типы концентраторов и неоднородностей [17–21, 23–25]. 
В настоящей работе предлагается использовать экспериментальные данные 
по зависимости параметров сопротивления усталости образцов металлов от 
характерных размеров коррозионных полостей, присутствующих на их по-
верхности. В настоящее время известно достаточно большое количество та-
ких экспериментов, где проводились детальные исследования влияния ха-
рактерных размеров точечных коррозионных дефектов на характер развития 
повреждений и усталостное разрушение металлических образцов [8, 9, 11, 
13–15]. Эти данные предлагается описать на основе концепции концентра-
ции напряжений. То есть предполагается, что предельное состояние матери-
ала полностью определяется уровнем максимальных напряжений, который 
реализуются для данной геометрии дефекта и который может быть найден на 
основе численного решения задачи ГТУ. При этом для прогноза прочности 
образца с коррозионным дефектом используются известные эксперименталь-
ные данные для свойств материала без дефектов и учитывается коэффициент 
концентрации. То есть предполагается, что поведение материала с дефектом 
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эквивалентно поведению материала без дефекта, но при более высокой на-
грузке, которая вычисляется через найденный коэффициент концентрации. 
Таким образом, проводится стандартный прочностной анализ для образца с 
концентратором без привлечения дополнительных гипотез о развитии повре-
ждений в режиме “коротких” и “длинных” трещин и т.п. 

Предлагаемый подход является приближенным, так как он не учитывает 
характера развития пластических деформаций вблизи коррозионной поло-
сти в процессе усталостного нагружения. Однако заметим, что аналогичные 
известные классические подходы также основаны на использовании ЛУМР 
[9–11, 14]. Это определяется тем, что по сравнению со статическими режи-
мами разрушения, в процессах усталостного разрушения намного больший 
объем материала работает в зоне упругих деформаций, а концентрация пла-
стических деформаций оказывается существенно локальной.

5. Примеры идентификации. Рассмотрим данные экспериментов, в которых 
было исследовано влияние размеров единичных поверхностных полусферои-
дальных полостей на количество циклов нагружения, необходимых для начала 
зарождения усталостных трещин в стали API-5L X65 [13]. Появление и рост 
трещин контролировалось на поверхности образцов с использованием элек-
тронной микроскопии и данных DIC анализа. Амплитуда цикла напряжений 
составляла 450 МПа (коэффициент асимметрии цикла R = 0.1), что соответ-
ствует пределу выносливости для данной марки стали [42]. Было установлено, 
что для полостей глубиной 190 мкм рост усталостных трещин не начинается 
и образцы демонстрируют предел выносливости на базе измерений 107 цик-
лов аналогично образцам со стандартной подготовкой поверхности. Для более 
глубоких полостей (270–440 мкм) была установлена амплитуда напряжений, 
при которой начинался рост усталостных трещин (см. табл. 1.). Для объясне-
ния наблюдаемых особенностей зарождения трещин было отмечена возмож-
ность локализации пластических деформаций в образцах с более глубокими 
дефектами. В образцах с полостью глубиной 190 мкм, по предположению, 
локализация пластических деформаций была слишком мала, для того чтобы 
на выбранной базе измерений произошло появление усталостных трещин. 
Рассчитанный уровень концентрации напряжений Kt в рамках классической 
теории упругости был представлен в работе [13] и приведен в табл. 1. Этот 
уровень концентрации соответствует решениям ГТУ, получаемым при l = 0.

Таблица 1. Обработка экспериментальных данных по влиянию поверхностных 
полостей на развитие микротрещин в образцах стали API-5L X65 [3]

Глубина 
полости, 

мкм

Диаметр 
поло-

сти, мкм

Число циклов 
до образования 
микротрещин

Kt  (класси-
ческое реше-

ние, l = 0)

Kt (решение ГТУ)

l = 190 
мкм

l = 240 
мкм

l = 270 
мкм

190 630 >107 1.87 1.27 1.26 1.17
270 680 5.28 · 105 1.98 1.34 1.32 1.22
380 795 2.3 · 104 2.15 1.46 1.43 1.31
440 800 7.5 · 103 2.22 1.51 1.49 1.35



	 ОЦЕНКА МАСШТАБНЫХ ПАРАМЕТРОВ МЕТАЛЛОВ ПО ДАННЫМ...� 179

В настоящей работе предлагается альтернативная трактовка эксперимен-
тальных данных работы [13], которая может быть получена на основе срав-
нения решения задачи классической теории упругости и решения ГТУ. Эти 
решения были построены для размеров поверхностных полостей, которые 
использовались в экспериментах (табл. 1). На основе расчетов были опреде-
лены коэффициенты концентрации Kt в решении ГТУ, при этом значения 
масштабного параметра выбиралось из следующих соображений. Из результа-
тов экспериментов известно, что для полости глубиной 190 мкм роста тре-
щин не наблюдается. В то же время, из теоретических расчетов следует, что 
концентрация напряжений в образце с поверхностной полостью практиче-
ски не возникает в решении ГТУ, если глубина этой полости примерна рав-
на масштабному параметру материала (то есть h/l = 1, см. рис. 2б). Поэтому 
предполагая, что отсутствие роста трещины связано с недостаточным уровнем 
концентрации напряжений, получаем, что масштабный параметр материала 
может лежать в диапазоне от 190 мкм (глубина полостей, для которых не по-
являлись трещины) до 270 мкм (глубина полостей, для которых начали появ-
ляться трещины). 

Результаты расчетов коэффициента концентрации для трех вариантов 
масштабного параметра l = 190 мкм, 230 мкм и 270 мкм представлены в таб
лице 1. Оказывается, что для указанных значений масштабных параметров 
решение ГТУ прогнозирует уровень концентрации напряжений в диапазоне 
1.17–1.27. Концентрация эквивалентных напряжений по Мизесу имеет очень 
близкие значения (отличие Kt от Kt,э не более 5%, причем Kt,э< Kt). Важным 
является тот факт, что полученное значение концентрации примерно соот-
ветствует уровню предела текучести, который для стали Х65 для скоростей на-
гружения, используемых в усталостных испытаниях, достигает sm = 544 МПа 
(этот уровень напряжений возникает при концентрации Kt = 544/450 = 1.2). Та-
ким образом, решение ГТУ прогнозирует, что для полости глубиной 190 мкм 
материал вообще не переходит в состояние пластических деформаций, и 
именно поэтому в нем не происходит локализации пластических деформа-
ций, и не образуются трещины. Заметим, что классическое решение для этой 
глубины полости дает очень высокое значение коэффициента концентрации 
(1.87). При этом для глубины 270 мкм рост концентрации происходит всего 
до уровня 1.98, а число циклов до начала образования трещин снижается ми-
нимум на два порядка. 

Очевидно, что классическое упругое решение, как и решение ГТУ, нельзя 
использовать для оценки локализации пластических деформаций. Но эти ре-
шения можно использовать для оценки перехода материала в состояние теку-
чести и первичной оценки размеров области, в которой материал находится 
в состоянии пластичности. На рис. 4 показано распределение концентрации 
для максимальных главных напряжений и для эквивалентных напряжений по 
Мизесу в классическом решении и в решении ГТУ (для случая l  = 0.24 мкм). 
Здесь видно, что для всех размеров полостей классическое решение (марке-
ры без заливки на рис. 4) прогнозирует очень большие зоны с высокой кон-
центрацией, где материал должен находиться в состоянии текучести, кото-
рые, судя по данным работы [13] в эксперименте не наблюдались. В то же 
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время решение ГТУ при выбранном значении масштабного параметра дает 
естественное объяснение отсутствию трещин в образцах с полостями глуби-
ной 190 мкм – в этих образцах материал полностью работает в зоне упругих 
деформаций (синие маркеры с заливкой на рис. 4). Для более глубоких поло-
стей прогнозируется образования области пластических деформаций, которая 
при определенном числе циклов нагружения может приводить к образованию 
трещин. 

Таким образом, оценка масштабного параметра для стали Х65, полученная 
по данным экспериментов [13], составляет 0.2–0.25 мм, причем это значе-
ние существенно больше среднего размера зерен данной стали, который со-
ставляет ~10 мкм [13] и обычно принимается в качестве первичной оценки 
для масштабного параметра квази-хрупких поликристаллических материалов 
[16, 27]. Такое высокое значение масштабного параметра может быть связано, 
во-первых, с тем, что материал является пластичным [43], а во-вторых, с тем, 
что на значения масштабного параметра могут дополнительно влиять особен-
ности текстуры поликристаллического материала, присутствующие примеси, 
межзеренные границы и т.д. [27].

Далее рассмотрим экспериментальные данные, полученные в испытаниях 
на сопротивление усталости образцов стали X20Cr13 (российский аналог – 
сталь 20Х13) [11]. В этих испытаниях использовались три типа образцов, под-
верженных предварительному воздействию коррозионно-активной среды в 
течение различных периодов времени и содержащие, соответственно, мно-
жественные поверхностные коррозионные дефекты различной глубины (h). 
Отношение размеров дефектов в плоскости к глубине было примерно посто-
янным и составляло h/a = 0.62 (a = b). Были определены напряжения, при 

(а)  (б)

Рис. 4. Распределение концентрации максимальных главных напряжений (а) и эквива-
лентных напряжений по Мизесу (б) вдоль контура полостей разной глубины в стали X65 
в классическом решении (маркеры без заливки) и в решении ГТУ при значении масштаб-
ного параметра l = 0.24 мм (маркеры с заливкой). Горизонтальным пунктиром показан 
уровень концентрации, соответствующий пределу текучести.
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которых в режиме усталостных испытаний в материале начинается рост тре-
щин вблизи поверхностных дефектов при различном значении коэффици-
ента асимметрии цикла R (табл. 2). Было установлено, что эти критические 
напряжения снижаются при увеличении глубины поверхностных дефектов, 
что было объяснено на основе модели ЛУМР, в которой предполагалось, что 
размер поверхностных полостей может считаться начальным размером по-
верхностных полуэллиптических трещин [11]. Для обработки результатов этих 
испытаний на основе ГТУ и концепции концентрации напряжений, оценим 
номинальный уровень концентрации напряжений, который реализовывался 
в экспериментах. Значение номинального уровня концентрации получим, как 
отношение напряжений начала роста усталостных трещин в образцах, непод-
верженных коррозии, к соответствующим напряжениям в образцах с коррози-
ей для данного значения R. В таблице 1 показано, что величина номинальной 
концентрации изменяется от значений близких к 1 для малых коррозионных 
полостей глубиной 25 мкм до значений более 2 для крупных полостей, кото-
рые в среднем обладали глубиной 250 мкм. 

Таблица 2. Обработка экспериментальных данных по влиянию поверхностных 
дефектов на критические напряжения начала роста усталостных трещин 
в стали X20Cr13 [11]

Глубина 
полости, 

мкм

Диаметр 
полости, 

мкм
R 

Напряжения, приводящие  
к образованию микротрещин, 

МПа

Номинальный 
коэффициент 
концентрации

0 0

0.1

250 1
25 40 230 1.09

145 234 115 2.17
250 403 90 2.78

0 0
0.3

225 1
25 40 215 1.05

145 234 110 2.05
0 0

0.5

175 1
25 40 160 1.09

145 234 100 1.75
250 403 90 1.94

Описание экспериментальных данных работы [11] нельзя построить на 
основе классических решений теории упругости, так как полости на поверх-
ности образцов обладали примерно одинаковыми относительными размера-
ми и были достаточно малы по сравнению с толщиной этих образцов. Для 
среднего отношения глубины к диаметру полостей h/a = 0.62 классическое 
решение дает постоянный уровень концентрации напряжений 2.35. Допол-
нительных параметров, которые могли бы позволить описать наблюдавший-
ся размерный эффект для номинального коэффициента концентрации, в 
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классическом решении теории упругости нет. Напротив, решение ГТУ содер-
жит масштабный параметр и прогнозирует изменение уровня концентрации 
напряжений в зависимости от абсолютных размеров поверхностных дефектов. 
Сопоставление экспериментальных данных работы [11] и решения ГТУ пред-
ставлено на рис. 5. Линиями здесь показано прогнозируемое изменение кон-
центрации напряжений при изменении глубины полостей для трех различных 
значений масштабного параметра 5–50 мкм. Точками показаны эксперимен-
тальные значения номинальной концентрации, которые были представлены 
в таблице 2. Решения ГТУ даны для среднего значения относительной глу-
бины полостей (h/a = 0.62, синие линии), а также для случая более глубоких 
полостей, которые по данными работы [11] также присутствовали в образцах 
(h = 500 мкм, h/a = 1.24, желтые линии). Из представленного сопоставле-
ния видно, что решение ГТУ с масштабным параметром l = 20 мкм позволяет 
достаточно хорошо описать экспериментальные данные. При этом получен-
ная величина масштабного параметра для стали X20Cr13 значительно ниже, 
чем определенная выше для стали X65. Объяснение этому факту может быть 
основано на том, что сталь X20Cr13 является более хрупкой. Для хрупких ма-
териалов известно, что их масштабные параметры всегда ниже по сравнению 
с квази-хрупкими и пластичными материалами [18–20, 25]. Сталь X20Cr13 
обладает более высокой прочностью (до 1000 МПа и выше) по сравнению с 
X65 (до 620 МПа [42]) и значительно более низким значением критического 
коэффициента интенсивности напряжений K1c (X20Cr13 – 35 МПа · м0.5, X65 – 
226 МПа ·м0.5 [12, 44]). 

×

×

×

◦

◦
△ △

× R = 0.1

◦ R = 0.3

△ R = 0.5

1 5 10 50 100 500 1000
0.5

1.0
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2.5

h
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Рис. 5. Зависимость коэффициента концентрации напряжений от глубины дефекта h 
[мкм] в образцах стали X20Cr13. Точки – номинальные значения Kt, соответствующее 
экспериментальным данным. Линии – решение ГТУ (l = 20 мкм – сплошные, l = 5 мкм – 
штриховые, l = 50 мкм – пунктирные). Синий цвет – h/a = 0.62, желтый цвет – h/a = 1.24. 
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Далее рассмотрим экспериментальные данные по влиянию размера по-
верхностных дефектов на количество циклов до разрушения образцов алю-
миниевого сплава Al 2024-T3 (российский аналог – сплав Д16) [14]. Испыта-
ния проводились для амплитуды напряжений 206 МПа (R = 0.2) с образцами 
сплава, содержащими единичные поверхностные полости. Размеры полостей 
и полученное в экспериментах количество циклов до разрушения представ-
лены в табл. 3. Здесь же указаны соответствующие значения предела ограни-
ченной выносливости сплава Al 2024-T3 (для данного числа циклов до раз-
рушения) со стандартной подготовкой поверхности [45, 46]. Номинальный 
коэффициент концентрации вычислен как отношение предела ограниченной 
выносливости для данного числа циклов до разрушения к амплитуде напря-
жений, заданной в испытаниях (206 МПа). Экспериментальные данные взя-
ты из работы [14] для полостей относительно малой глубины (до 400 мкм) по 
сравнению с полной толщиной образца (1.6 мм), чтобы исключить влияние 
краевых эффектов. Заметим, что для этих данных теоретическое описание на 
основе ЛУМР дает погрешности порядка 15-40% [14], что соответствует из-
вестной проблеме моделирования усталости на этапе развития “малых” кор-
розионных полостей и “коротких” трещин [7]. 

Таблица 3. Обработка экспериментальных данных по влиянию поверхностных 
полостей на число циклов до разрушения образцов сплава Al 2024-T3 с 
поверхностными дефектами [14]

Глу-
бина 
поло-
сти, 
мкм

Диа-
метр 

поло-
сти, 
мкм

Число 
циклов 
до раз-
руше-

ния

Предел 
ограничен-
ной выно-
сливости 
образцов 

без дефек-
тов, МПа

Номи-
наль-

ный ко-
эффи-
циент 

концен-
трации

Kt 
(клас-
сиче-
ское 

реше-
ние,  
l = 0)

Kt (решение ГТУ)

l = 50 
мкм

l = 100 
мкм

l = 200 
мкм

30 230 7.4 · 105 240 1.17 1.63 1.23 1.1 1.04
75 240 5.2 · 105 250 1.21 1.91 1.42 1.19 1.07

170 240 3.4 · 105 270 1.31 2.47 1.69 1.33 1.12
375 250 2.2 · 105 290 1.41 3.12 2.08 1.54 1.2

Для обработки данных работы [14] предполагаем, что при наличии дефекта 
материал работает так же, как образец с гладкой поверхностью, но при повы-
шенном уровне напряжений, который соответствует номинальному коэффи-
циенту концентрации. Теоретические значения Kt, найденные для заданных 
размеров полостей в классической теории упругости и в ГТУ представлены 
в табл. 3. Как видно, классическое решение прогнозирует значительно более 
высокое значение коэффициента концентрации напряжений по сравнению 
с установленным по экспериментальным данным. Если бы в материале реали-
зовывалась концентрация, соответствующая классическому решению, то он 
бы начал разрушаться при значительно меньшем числе циклов нагружения. 
На рис. 6 показан размер зоны пластических деформаций, реализующейся 
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вблизи самой глубокой полости (375 мкм). Для оценки размеров зоны теку-
чести здесь использовано как упругое классическое решение (рис. 6а), так и 
упругопластическое решение (рис. 6б). Для моделирования упруго-пластиче-
ских деформаций задавалась билинейная аппроксимация диаграммы напря-
жения-деформации сплава Al 2024-T3 с пределом текучести 345 МПа, пре-
делом прочности 483 МПа и предельными деформациями 17.5%. В расчете 
предполагалось изотропное упрочнение и использовался критерий пластич-
ности Мизеса. Найденные максимальные пластические деформации превы-
шают 0.6% (рис. 6б), что соответствует уровню напряжений на диаграмме 
напряжения-деформации ~360 МПа. При таком уровне напряжений в сплаве 
Al 2024-T3 число циклов до разрушения не превышает 7 · 104 [45, 46], т.е. в три 
раза меньше, чем наблюдалось в эксперименте (см. табл. 3).

В решении ГТУ удается подобрать значение масштабного параметра, при 
котором можно описать реализующуюся зависимость номинальной кон-
центрации напряжений от размеров полости. Это значение составляет по-
рядка l  = 100 мкм (табл. 3). При этом в решении ГТУ материал полностью 
находится в упругом состоянии, что соответствует экспериментальным дан-
ным, так как переход в состояние текучести происходило бы при значениях 
Kt ~ 375/206 = 1.82. Соответствие решения ГТУ и эксперимента для коэффици-
ента концентрации показано на рис. 7, где даны прогнозируемые зависимости 
Kt от абсолютной и относительной глубины поверхностной полости. Относи-
тельные глубины (a/h) даны в соответствии с экспериментальными данными, 
указанными в табл. 3. На рис. 7 видно, что концентрация напряжений вблизи 
полостей с разной геометрией с достаточно высокой точностью может быть 
аппроксимирована представленным решением ГТУ при выбранном значении 
l = 100 мкм. 

Погрешности расчета по отношению к эксперименту для полостей с самой 
малой и самой большой глубиной (синий и зеленый цвет на рис. 7) могут 
быть, по-видимому, снижены, если рассматривать более общий вариант 

(а)  (б)

Рис. 6. Оценка размеров зоны пластических деформаций в классическом упругом реше-
нии (а, эквивалентные напряжения, МПа) и в упругопластическом решении (б, пласти-
ческие деформации, %) для образцов сплава Al 2024-T3 с поверхностной полостью с раз-
мерами a = b = 250 мкм, h = 375 мкм при растягивающей нагрузке 206 МПа.
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определяющих соотношений ГТУ (2.3) с большим числом масштабных па-
раметров, отвечающих за характер размерного эффекта в областях с разной 
геометрией концентраторов и разным характером напряженно-деформиро-
ванного состояния (см., например, [21, 47]). Используемые определяющие 
соотношения (2.3) являются наиболее простыми среди частных случаев общей 
градиентной теории Миндлина [16, 17], хотя в то же время они отвечают тре-
бованиям по материальной объективности и положительной определенности 
плотности энергии деформаций. Помимо рассматриваемой упрощенной тео-
рии Айфантиса, в качестве альтернативы можно также использовать упро-
щенные теории, отвечающие более общим условия симметрии (см., напри-
мер, [49, 50]). Рассмотрение вариантов ГТУ с различными определяющими 
соотношениями для уточненного описания рассматриваемых эффектов пла-
нируется реализовать в процессе будущей работы авторов.

В качестве последнего примера идентификации, рассмотрим эксперимен-
тальные данные работы [15] для алюминиевого сплава 7075-T6 (российский 
аналог – В95Т1). В данной работе были использованы образцы сплава, предва-
рительно подвергнутые воздействию коррозионно-активной среды в течение 
времени до 1536 ч и содержащие множественные коррозионные поверхност-
ные дефекты, размеры которых были детально исследованы (табл. 4). Было 
отмечено, что для образцов, содержащих более крупные дефекты, происходи-
ло снижение предела ограниченной выносливости, соответствующее измене-
нию номинального коэффициента концентрации напряжений в диапазоне от 
1 (отсутствие дефекта) до 2 (для наиболее крупных дефектов) [15]. Описание 
этого явления было дано на основе ЛУМР в предположении, что начальный 
размер поверхностных полуэллиптических трещин равен среднему размеру 
коррозионных полостей. В экспериментах образцы обладали толщиной 2 мм 
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a /h  =  3.2

a /h  =  1.41

a /h  =  0.67
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Рис. 7. Зависимость концентрации напряжений от глубины поверхностной полости в образ-
це сплава Al 2024-T3 для разных соотношений диаметра к глубине (a/h). Точки – экспери-
ментальные данные, линии – решение ГТУ с масштабным параметром l = 100 мкм, h [мкм].
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и испытывались на усталость при амплитуде напряжений 414 МПа (R = 0.02) 
в направлении поперек проката. Коррозионные дефекты обладали полуэл-
липсоидальной формой, вытянутой в направлении вдоль проката, поэтому 
наибольший характерный размер этих дефектов в плоскости в рассматрива-
емых нами обозначениях задается как b, а меньший – а (см. рис. 1а). Заме-
тим, что для разного времени обработки образцов, в них появились дефек-
ты с разными абсолютными и относительными размерами (cм. табл. 4), что 
приводит к неоднозначному изменению уровня концентрации напряжений. 
В частности, самые глубокие полости (h = 50.5 мкм) являются более пологими 
по сравнению с полостями самой малой глубины (h = 13.9 мкм). Более того, 
абсолютные средние размеры дефектов немонотонно зависят от времени об-
работки образцов.

Таблица 4. Обработка экспериментальных данных для образцов сплава 7075-
T6 с поверхностными коррозионными дефектами [10]

Время 
обра-
ботки, 

ч

Длина 
поло-
сти, а, 

мкм

Ширина 
поло-
сти, b, 

мкм

Глубина 
поло-
сти,  

h, мкм

Относи-
тельная 
длина, 

a/h

Относи-
тельная 
шири-
на, b/h

Kt (клас-
сическое  
решение, 

l = 0)

Kt (реше-
ние ГТУ, 

l  = 20 
мкм)

96 64.3 107 13.9 4.6 7.7 2 1.31
384 187 238 25.4 7.4 9.4 1.76 1.51
768 140.3 163 23.5 6 6.9 1.74 1.45

1536 399 426 50.5 7.9 8.4 1.66 1.59

Для оценки масштабного параметра, который позволил бы описать дан-
ные работы [14] по влиянию размеров поверхностных дефектов на предел 
ограниченной выносливости образцов сплава 7075-T6, были построены за-
висимости прогнозируемых ГТУ значений коэффициента концентрации от 
значения масштабного параметра (рис. 8а) для размеров полостей, указанных 
в табл. 4. Заметим, что эти зависимости на рис. 8а имеют различные асим-
птоты в зоне малых значений масштабного параметра (l < 10 мкм), которые 
соответствует классическому решению (см. табл. 4) и которое определяется 
только относительными размерами дефектов. Видно, что получаемое в этой 
области (классическое) решение в рамках концепции концентрации напряже-
ний принципиальным образом не может описать экспериментальные данные, 
в которых выдержка в коррозионно-активной среде в течение 96 ч приводи-
ла к меньшему снижению предела ограниченной выносливости по сравне-
нию с образцами, полученными с использованием более долгой обработки 
(см. рис. 8б, экспериментальные данные – точки). Напротив, применение 
решения ГТУ позволяет приблизиться к описанию эксперимента с доста-
точно хорошей точностью, сопоставимой с той, которая была получена на 
основе модели ЛУМР в работе [15]. Для этого на рис. 8а была рассмотрена 
область относительно больших значений масштабного параметра (l > 10 мкм), 
в которой размерный эффект в решении ГТУ проявляется достаточно силь-
но и зависимость уровня концентрации напряжений начинает определяться 
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абсолютными размерами дефекта. В этой области реализуется решение для Kt, 
которое качественно соответствует эксперименту, в частности, наибольшая 
концентрация напряжений и наибольшее снижение прочности реализуется 
в образцах, подвергнутых наиболее длительной обработке (1536 ч, зеленый 
цвет). 

Для обработки эксперимента было подобрано значение масштабного па-
раметра l = 20 мкм, при котором в решении ГТУ реализуется уровень концен-
трации в диапазоне Kt = 1.31–1.59 (см. рис. 8а и табл. 4). Эти значения Kt были 
использованы для построения аппроксимаций экспериментальных данных 
на рис. 8б (линии). Здесь для описания данных для образцов без дефектов 
(черный цвет) использована степенная аппроксимация вида s0.02 = 3989N–0.218, 
полученная в среднеквадратичном приближении для экспериментальных дан-
ных работы [15], а также с учетом дополнительной точки в зоне малоцикло-
вой усталости (N = 10 000, s0.02 = 550 МПа), взятой из справочника [48]. Эта 
дополнительная точка необходима для расширения зоны аппроксимации для 
описания результатов для образцов с дефектами, в которых число циклов до 
разрушение значительно снижалось. Аппроксимации для дефектных образцов 
на рис. 8б построены в предположении, что реализующаяся концентрация 
напряжений вблизи дефектов приводит к тому, что материал работает в усло-
виях, соответствующих усталостным испытаниями при более высоком уровне 
максимальных напряжений цикла. Соответственно аппроксимации для об-
разцов с дефектами на рис. 8б были построены как s0.02(N)/Kt, где значение 
Kt найдены из решений ГТУ (табл. 4). Видно, что результаты расчета хорошо 
согласуются с экспериментом. 

Выводы и обсуждение результатов. В данной работе предложена методика 
идентификации масштабного параметра ГТУ для металлов на основе данных 

(а)  (б)

Рис. 8. Обработка экспериментальных данных для образцов сплава 7075-T6, содержащих де-
фекты различного размера (в соответствии с табл. 4). (а) Зависимость концентрации напря-
жений в решении ГТУ от масштабного параметра. (б) Кривые усталости. Точки – экспери-
ментальные данные (в часах) [15], линии – аппроксимация на основе вычисленных значе-
ний концентрации напряжений в решении ГТУ, l [мкм], N – число циклов до разрушения.
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усталостных испытаний. Для этого предложено использовать известные экс-
перименты по влиянию размера поверхностных полостей (дефектов) на пара-
метры сопротивления усталости. Классическое описание таких эксперимен-
тов требует привлечения ЛУМР, в то время как применение решений ГТУ 
позволяет получать хорошую точность теоретических оценок в рамках кон-
цепции концентрации напряжений.

Показано, что решения ГТУ естественным образом позволяют описывать 
зависимость номинального коэффициента концентрации напряжений от раз-
мера поверхностных полостей и дефектов, которые наблюдаются в экспери-
ментах. Возникающий размерный эффект в решении ГТУ является естествен-
ным следствием более сложной структуры плотности энергии деформаций 
(2.1) и следующих из нее определяющих соотношений (2.2), (2.3). При этом 
учет влияния градиентных эффектов оказывается значительным, если разме-
ры концентраторов сопоставимы с масштабным параметром материала.

Предложено несколько подходов для идентификации масштабного пара-
метра ГТУ. Во-первых, можно использовать данные по значению критических 
напряжений и/или количеству циклов, при которых происходит зарождение 
усталостных трещин на дефектах различного размера (как это было сделано 
для сталей). Такой подход, однако, является достаточно трудоемким и требу-
ет детального изучения поверхности образцов с использованием микроско-
пии в процессе испытаний в целях выявления момента зарождения трещин. 
Во-вторых, можно использовать данные по зависимости предела ограничен-
ной выносливости от размера поверхностных дефектов (как это было сдела-
но для сплава 7075). Такой подход, как и в стандартных испытаниях, требует 
использования достаточно большего числа образцов. Упростить его можно 
если использовать данные по числу циклов до разрушения образцов с дефек-
тами при заданных одинаковых параметрах цикла, если для сплава известна 
диаграмма сопротивления усталости (как это было сделано для сплава 2024), 

Основная идея во всех подходах одинакова. Предполагается справедли-
вость концепции концентрации напряжений и считается, что наличие де-
фектов приводит к повышению напряжений вблизи концентратора и, как 
следствие, материал проявляется свои характеристики сопротивления уста-
лости, соответствующие более высокой амплитуде прикладываемых напря-
жений. Заметим, что коэффициент концентрации напряжений для типич-
ных коррозионных дефектов не превышает 3, что для статических испытаний 
пластичных материалов обычно оказывается не существенным при малых 
абсолютных размерах дефекта и, соответственно, при малой зоне локализа-
ции пластических деформаций. Поэтому такие данные статических испыта-
ний с несингулярными концентраторами сложно использовать для оценки 
реализующегося размерного эффектов в упругой области деформаций (в от-
личие от данных по испытаниям образцов с трещинами [18–21, 23–26]). 
Однако в режиме усталостных испытаний повышение уровня напряжений на 
20–30% может уменьшать на порядки число циклов до разрушения или до на-
чала роста трещин. Поэтому представляется, что использование данных уста-
лостных испытаний является достаточно информативным для рассматривае-
мых задач идентификации. Кроме этого, реализация усталостных испытаний 
в зоне упругих деформаций позволяет говорить о возможности использования 
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рассматриваемой линейно упругой теории (так же, как и ЛУМР) без привле-
чения нелинейных моделей. 

По результатам расчетов показано, что для рассмотренных сталей и алю-
миниевых сплавов идентифицированные значения масштабного параметра 
изменяются в достаточно широком диапазоне (20–270 мкм), что, по-видимо-
му, связано с различными характеристиками вязкости разрушения рассмат-
риваемых материалов. Более хрупкие материалы обладают меньшим масштаб-
ным параметром, по сравнению с более пластичными. 

В будущей работе целесообразно рассмотреть более сложные определяю-
щие соотношение ГТУ [16, 49–52], которые позволили бы расширить возмож-
ности описания различных масштабных эффектов, реализующихся для поло-
стей с различной характерной геометрией и размерами. Также целесообразно 
рассмотреть модели образцов, содержащих множественные взаимодействую
щие дефекты и проверить соответствие значений масштабных параметров, 
найденных по данным статических испытаний для образцов с трещинами и по 
данным усталостных испытаний для образцов с поверхностными дефектами.

Исследование выполнено за счет гранта Российского научного фонда 
(проект № 23-49-10061)
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Absrtact –A method for identifying the scale parameter of the gradient theory 
of elasticity is proposed based on known experimental data on the effect of the 
size of surface corrosion defects on the fatigue resistance parameters of steels and 
aluminum alloys. The possibility of a natural description of a decrease in the stress 
concentration coefficient near small-sized corrosion defects, which in this work 
are modeled as semi-ellipsoidal surface cavities, is shown. The identified values of 
the scale parameters are in the range of 20–230 microns.

Keywords: strain gradient elasticity, length scale parameter, corrosion defects, 
numerical simulations, size effects, fatigue test
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