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Работа посвящена теоретическому исследованию задачи идентифика-
ции неоднородного напряженно-деформированного состояния (НДС) 
в толстостенных трубчатых и сплошных образцах, нагружаемых осевой 
силой, крутящим моментом, внешним (а для трубок – и внутренним) 
давлением. В отличие от стандартных испытаний с тонкостенными труб-
ками в этом случае удается достичь существенно более высоких величин 
деформаций до потери несущей способности образцов.  Известным под-
ходом к решению этой задачи является метод условной трубки, требую
щем для идентификации НДС проведения двух согласованных экспе-
риментов по близким программам нагружения. В работе дано теорети-
ческое обоснование метода условной трубки (и вырожденной условной 
трубки) с учетом конечных деформаций в образце. 
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1. Введение. Задача об идентификации неоднородного напряженно-де-
формированного состояния (НДС) в образцах по результатам эксперимен-
тов относится к классу обратных задач, решение которых представляет зна-
чительные трудности [1–4]. Применительно к испытаниям сплошных или 
толстостенных трубчатых образцов, нагружаемых осевой силой, крутящим 
моментом, внешним (а для трубок – и внутренним) давлением, в дальней-
шем именуемым (P, M, qi) нагружением, известным подходом к решению 
этой задачи является метод условной трубки, систематическое обоснование 
которому при ограничениях малых деформаций дано в работе [5]. В сравне-
нии со стандартными испытаниями с тонкостенными трубчатыми образ-
цами метод условной трубки позволяет изучить свойства материалов в су-
щественно большем диапазоне деформаций. К безусловным достоинствам 
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метода также следует отнести значительно более широкий класс исследуемых 
изотермических процессов деформаций в отличии от существующих экспе-
риментальных методик [6], допускающих лишь особые виды нагружений. 
Определенным минусом методики, объясняющим ее недостаточную практи-
ческую востребованность, является ограничение ее применимости областью 
малых деформаций, а также необходимость проведения для идентификации 
НДС, в общем случае, двух связанных экспериментов по близким програм-
мам нагружения, что предъявляет повышенные требования к повторяемости 
механических свойств материалов и к качеству изготовляемых образцов. В ра-
боте метод условной и вырожденной условной трубки расширен на область 
конечных деформаций, а отмеченные выше недостатки в настоящее время во 
многом нивелируется совершенствованием испытательных установок и улуч-
шением технологий производства и обработки испытуемых материалов. 

2.  Основные положения. Рассмотрим толстостенный круговой цилиндри-
ческий образец, нагружаемый по некоторой программе (кинематической, си-
ловой или комбинированной) осевой силой P, крутящим моментом M, вну-
тренним и внешним давлениями q1 и q2. В рабочей части образец представляет 
собой полый прямой круговой цилиндр в начальный момент времени длины l 
с внутренним и внешним радиусами основания r1 и r2 (l >> r2). С учетом извест-
ных кинематических гипотез вектор скорости v(v1, v2, v3) в актуальной конфи-
гурации Wt, записанный в естественной цилиндрической системе координат 
(r, j, z), имеет вид

	 ( ( , )), ( ) ( , ), ( ),1 2 3v v R r t v Ф t zR r t v L t= = =
 	 (2.1)

где R(r, t) и L(t) – актуальные значения радиальной координаты и длины ра-
бочей части образца соответственно, Ф(t) = Ф

~  
(t)/l – угол закручивания об-

разца на единицу длины рабочей части, а точкой обозначена производная по 
времени.

Материал образца предполагается несжимаемым:

	 / / / 0.1 1div v R v R L L∂ ∂ + + =v =  	
Из условия несжимаемости получаем соотношение для R(r, t) с точностью 

до подлежащей определению функции С(t):
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При этом ненулевые компоненты тензора скоростей деформаций v в акту-
альной конфигурации представляются в виде:

	

exp( ) exp( ) ( ),

exp( ) exp( ) ( ),

exp( ) , ,

2
2

11 2

2
2

22 2

23 33

2 22

2 2 22

1 Ф
2

RCv
RR

RCv
RR

v R v

 e e e= − − −e = − − −e c + 2  

 e e e= − + −e = − + −e c + 
 

= −e = e



  





  







	 (2.3)



104	 МОССАКОВСКИЙ

где , ( ), ( ) , ( , ).23 2 22 2 2 2 2 2L L v R v R R R R R r te = g = c = = = 

  

Величины e(t), g(t) и c(t) считаются независимыми кинематическими па-
раметрами нагружения и представляют собой компоненты объективной не-
голономной тензорной меры деформаций e из известного представительного 
класса энергетически сопряженных пар инвариантных тензорных пар мер де-
формаций и напряжений коротационного типа (eR, sR), определяемых соот-
ношениями:

	
( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ),
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где R – ортогональный тензор 2-го ранга, характеризующий частную модель 
коротационного представления движения из начальной конфигурации W0 ча-
стицы среды в актуальную Wt, sc – тензор напряжений Коши, ()T – знак транс-
понирования. Этот класс тензорных мер широко применяется в определяю-
щих соотношениях, записанных в инкрементальной форме, и его свойства 
детально изучены [7–9]. В частности, ими наследуется базовое свойство ро-
дительских величин о возможности механически обоснованного разделения 
тензоров на шаровую и девиаторные части с сохранением физического смыс-
ла основных инвариантов. В представляемой методике используется корота-
ционная модель, где тензор R определяется поворотом поперечных сечений 
образца (или, согласно [10], поворотом сопровождающего естественный ла-
гранжев базис ортонормированного репера Ильюшина) в соответствии с при-
нятой кинематической схемой, характеризуемый матрицей с компонентами:
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Следствием выбранной коротационной модели являются связи:
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где в левой части цилиндрические компоненты тензоров относительно на-
чальной конфигурации, а в правой – относительно актуальной. 

Интегрируя соотношения (2.3) с учетом (2.2), получаем соотношения для 
ненулевых компонент тензора деформаций e:
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Таким образом, процесс деформации П(r, t)|0t в любой точке образца, в том 
числе и регистрируемый граничный процесс ( , ) | ( ), ( ), ( ) |Π t = e t g t c t0 02

t tr , од-
нозначно определяет весь пучок реализуемых в образце процессов деформа-
ций. Очевидным следствием (2.4) является, что tr(e) = 0, или, что тензор де-
формаций e является девиатором.

Ненулевые компоненты тензора напряжений sij(r, t) удовлетворяют урав-
нению равновесия:

	 ,
s − s∂

s + =
∂

11 22
11 0

R R 	 (2.5)

граничным условиям
	 | , |= =s = − s = −

1 211 1 11 2R R R Rq q 	 (2.6)

и двум интегральным уравнениям, включающим величины регистрируемых 
в эксперименте силовых параметров P, M и qi:
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RdR P q R q Rπ s = + π − π∫ 	 (2.7) 

	 ,2

1

2
232

R

R
R dR Mπ s =∫ 	 (2.8)

где слагаемые в (2.7), содержащие qi, представляют дополнительное осевое 
усилие, вызванное внутренним давлением q1 на заглушки образца и внешним 
гидростатическим давлением q2.

Определяющие соотношения принимаются в виде произвольной функцио-
нальной зависимости между девиаторами тензоров напряжений и деформаций:

	 { } 0( ) | , .
3
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= t = −F Is e s s s  	 (2.9)

Cиловые и кинематические параметры нагружения P(t), M(t), q1(t), q2(t), e(t), 
g(t), c(t) не являются независимыми. Рассмотрим энергетическое тождество
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	 (2.10)

связывающего удельные (на единицу длины) мощности внутренних и внеш-
них сил, действующих на образец, и устанавливаемое по аналогии с [5] и 
c использованием соотношений, следующих из (2.4)—(2.8):
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С учетом справедливости тождественности сверток s = sij ij ij ijv v  и опре-
деляющего соотношения (2.9), левая часть тождества (2.10), а значит и пра-
вая его часть, является функционалом регистрируемого граничного процес-
са Π t = e t g t c t0 02( , ) | ( ), ( ), ( ) |t tr , а значит таковыми являются и обобщенные 
силы P(t), M(t), q(t), соответствующие скоростям обобщенных перемещений 
e, g, c, а также однозначно связанные с ними регистрируемые величины P(t), 
M(t), q(t). Последние представляют собой тройку независимых силовых па-
раметров нагружения, характеризующих реакцию материала на процесс де-
формаций Π t 02( , ) |tr . Предполагается, что функциональная связь между ки-
нематическими и силовыми параметрами может быть разрешима относитель-
но любой из 8 независимых троек (e, g, c), (e, M, c), (e, g, q), (e, M, q), (P, g, c), 
(P, M, c), (P, g, q), (P, M, q), каждая из которых однозначно определяет процесс 
изменения девиатора тензора напряжений в любой точке образца. В после-
дующем изложении, независимо от того по какой схеме реализуется реаль-
ный физический эксперимент, кинематической, силовой или смешанной, 
всегда будет предполагаться использование эквивалентной кинематической 
схемы нагружения. Также, поскольку в зависимость между кинематически-
ми и силовыми параметрами давления qi входят в виде их разности, то далее, 
без ограничения общности, величину внутреннего давления q1 будем считать 
фиксированной.

Обратимся к методике расшифровки результатов (P, M, qi) – нагружения 
толстостенного или сплошного (при q1 = 0) образца. Методы условной трубки 
и вырожденной условной трубки основываются на возможности при согласо-
ванном изменении управляющих параметров в двух экспериментах реализо-
вать в образцах один и тот же пучок процессов деформаций за исключением 
областей малой толщины, прилегающих к поверхностям образцов. 

По аналогии с [5] будем использовать понятие энергетической эквивалент-
ности (или равномощности) образцов ( ) ~ ( )

e
a b  в двух экспериментах a и b. 

Образцы (a) и (b) с внутренними и внешними радиусами r1
a, r2

a и r1
b, r2

b соот-
ветственно считаются равномощными при одновременном выполнении двух 
условий:

	
0 02 2

2 1 2 1

( , ) | ( , ) | ,

,

t tr r

m r r r r m

ba a b

b ba a a b

Π t = Π t

= = =
	 (2.11) 

т.е. при условии тождественности граничных процессов деформаций и равен-
ства относительных толщин трубок.

Установим следствия равномощности образцов (a) и (b):
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1. Геометрическое подобие (радиусы пропорциональны):

	 .a b a b= =1 21 2r r r r k 	 (2.12)
2. Физическое подобие (в обоих образцах реализуется один тот же пучок 

процессов деформаций):

	 0 0
1( , ) | ( , ) | , , Ф Ф .t tr r r r k
k

b b a a a b a bΠ t = Π t = = 	 (2.13)

3. Справедливость равенств:
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P S P S M S M S q q

P Mk k S R R
P M

a b a ba b a b a b
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b b

= = =

= = = π −
	 (2.14)

Переходя в выражениях для P и M к переменным r относительно начальной 
конфигурации посредством зависимости 

	 ( )   e  = − + c + e − 
  

1
22

2( ) exp 1 (exp(2 ) 1) ,
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r
R r r

r
	 (2.15)

следующей из (2.2) и (2.4), и учитывая, что exp( )( )2 2 2 2
2 1 2 1R R r r− = −e −  и 

RdR = exp(–e)rdr, получаем:
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R R r r

M S R R dR r R r rdr
R R r r

= s + = s +
− −

= s = s
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∫ ∫

∫ ∫
	

откуда равенства (2.14) следуют ввиду физического подобия образцов (2.13).
4. Тождественность удельных объемных мощностей внутренних сил:

	 , , .2

1

2
R

ij ijR

W W W L v RdR V LS
V V

a b

a b= = π s =∫ 	

5. Равномощность любых сплошных образцов, нагружаемых по идентич-
ной программе.

3. Идентификация НДС в образцах для различных типов испытаний.
3.1. (P, M, q1, q2) нагружение трубчатых образцов ( , ).1 1 0 1m m h hb a = + < <<
Пусть трубчатый образец (a) относительной толщины ma = r2

a/r1
a  нагружа-

ется по кинематической программе ( , )| { ( ), ( ), ( )}|0 02
t tra a a aΠ t ≡ e t g t c t  под дей-

ствием регистрируемых в эксперименте силовых характеристик P a, M a, q1, q2
a. 

При этом, как было показано выше, процессы деформаций и напряжений, за-
даваемыми девиаторами соответствующих тензоров, однозначно определяют-
ся тройкой независимых силовых параметров P, M, q в соответствии с (2.10). 
При этом давления qi включены в соотношения в виде разности q = –q2 + q1. 
Ниже, без ограничения общности, будем считать величину внутреннего дав-
ления q1 фиксированной во всех рассматриваемых случаях.
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Пусть теперь образец (b) такой, что , ,1 1 0 1m m h hb a = + < <<  так что

	 , ( ).1 21 2
1 1 1r r r r h
k k

b ba a= = + 	 (3.1)

Построим управление экспериментом с образцом (b), обеспечивающее 
тождественность процесса деформаций b bb b′ ′Π ≡ Π t 02 2( ) ( , ) |tr r  в близкой 
к границе точке ( / ) 22 1r k rb a′ =  образца (b) граничному процессу деформаций 
a a a aΠ ≡ Π t 02 2( ) ( , ) |tr r  в образце (a), которое сводится к уравнениям, следую

щим из (2.4) и (3.1): 

	
( )

( )

ln (exp( ) ) ,

exp( ) (exp( ) ) .

2

1
2 2

0

1 1 1 2 1
2 2

31 1 1 2 1 Ф
2 2

t

h

r h d

a b

a b b b

e  c = − + + + c + e − 

 g = − e + + c + e − t′  ∫ 

	

Из первого уравнения получаем связь между окружными деформациями

	 ( )ln (exp( ) ) .
2

1 11 2 1
2 2 1 h

b a ec = − + + c + e − + 
	 (3.2)

Переписывая второе уравнение в дифференциальной форме, получаем по-
сле преобразований с учетом (3.2):

	 exp( ) .
exp( )

1
2 22 2

2

h ha
b a

a

 c + e + +
g = g 

c + e 
  	 (3.3)

Соотношения (3.2) и (3.3) задают требуемую программу эксперимента с об-
разцом (b). 

Управление (3.3) может быть также переписано в терминах удельной крут-
ки Ф(t):

	 exp( ) .
exp( )

1
2 22 2

Ф Ф
2

h h
k

a
b a

a

 c + e + +
=  

c + e 
  	

В соответствии с (2.11) при нагружении по программе (3.2), (3.3), внутри 
образца (b) образуется виртуальный образец (b′) с ( )1 11r k rb a′ =  и ( )2 21r k rb a′ = , 
равномощный образцу (b) и нагружаемый по программе ( )2r

a b′Π . Переходя в 
выражениях для обобщенных силы P и момента M к лагранжевым координа-
там посредством (2.15) и представляя их в виде

	
exp( ) ( ( ) ) ( ( ) ) ( ( ) ) ,

exp( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

b b b′

b b b′

b b b′

b b b′

b
b b b

b
b b b b b b

e
= s + = s + + s +

π

e
= s = s + s

π

∫ ∫ ∫

∫ ∫ ∫

2 2 2

1 1 2

2 2 2

1 1 2

1 1 133 33 33

23 23 23

2

2

r r r

r r r

r r r

r r r

P
r q rdr r q rdr r q rdr

M
r R r rdr r R r rdr r R r rdr

получаем в силу равномощности образцов (a) и (b′) с учетом следствий 
(2.12)–(2.14):
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	 ( )

( )
/

exp( ) ( ( ) ) ,

exp( ) ( ) (exp( ) )

2

2

2

2

2

133

1 22
3

22
23

1 2

31 2 1 2 1
2

r

r

r

r

P P r q rdr
k

r
M M r r dr

k r

b

b′

b

b′

bb a

b
bb a b

= + π −e s +

  
 = + π − e s + c + e −   

∫

∫
или с точностью до h2:

	
( )

( )

exp( ) ( ( )) ,

exp( ) ( ( )).

2
2

2
33 2 1

3
3

2
23 2

1 2

1 2

r
P P h r q

k k

r
M M h r

k k

a
b a a a

a
b a a a a

 
 − = π −e s Π +    

 
− = π c − e s Π  

	 (3.4)

Регистрируемое в эксперименте с образцом (b) приращение давления  
Dq = q b – q a, требуемое для реализации кинематической программы (3.2), 
(3.3), входит в уравнение:

	 ( )( ) ( )
(exp( ) )

2 2

22

12
11 2211 22 21 2 1

R r

rR

r r r
q dR dr

R r r

b b

b b′ ′

−b b b
bD

 s − s  s − s  = − = − + c + e −    
∫ ∫

или с точностью до h2:

	 ( ( )) ( ( ))
.

exp( )

a a a a

a
D

s Π − s Π
=

c + e
22 2 11 2

2

r r
q h 	

В итоге получаем с точностью до h конечные соотношения для компо-
нент тензора напряжений s(t) как функции граничного процесса деформаций 

( , ) |02
tra aΠ t  и регистрируемых силовых параметров:

  

,

exp( ) ,

exp( ) exp( ) exp( ) ,
( ) ( )

exp( ).
( )

11 2 2

22 2

2 2

33 1 22 2
2 2

3

23 3
2

2

2
22 2

2

q q

q q
h

qk P P k P Pq q
hr h r h

k M M
r h

ba

a
a

b a b a
a a

a a

b a
a

a

D

D

s = − ≈ −

 c + e
s = −  

− −s = e − = e + c −
π π

−s = e − c
π

	 (3.5) 

В приближении малых деформаций выражения (3.5) переходят в извест-
ные соотношения для условной трубки [5]:
	

,

,

11 2 2

22 2

q q

q
q

h

ba

aD

s = − ≈ −

s = −
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,
( ) ( )

.
( )

2 2

33 1 22 2
2 2

3

23 3
2

22 2

2

qk P P k P Pq q
hr h r h

k M M
r h

b a b a
a

a a

b a

a

D− −s = − = + −
π π

−s =
π

Приведем также альтернативное представление соотношений (3.5) в тер-
минах условных напряжений ,

( ) ( )2 3
2 22 2

P M
P M
r r

Σ Σ
π

≡
π

≡

	
exp( ) exp( ) ,

exp( ),

33 2

23

2 2
2

3

P
P

M
M

q
q

h h

h

a a a

a a

D D

D

Σ s = + Σ e + c −  

Σ s = + Σ e − c  

	

где , .P P M MP M
b ba aD DΣ ≡ Σ − Σ Σ ≡ Σ − Σ

3.2. (P, M, q1, q2) нагружение трубчатых образцов (mb/m1
a = 1 + h, 0 < h << 1).

В качестве прямого следствия (3.5) получим соответствующие соотноше-
ния для случаев нагружения толстостенных трубчатых образцов осевой силой 
P и моментом M при равенстве внутреннего q1 и внешнего q2 давлений таких, 
что (mb/m1

a = 1 + h, 0 < h << 1). 
При таких нагрузках в образцах реализуются однородные поля радиальных 

и окружных деформаций, причем e11 = e22 = c = –e/2. В этом случае P  ≡ P и фор-
мулы (3.3), (3.5), приобретают следующий вид:

	

( ) ( )

( ) , ( ( ) ),
,

exp( ) exp( ) ,
( )

exp exp .
( )

11 22 2

2

33 2 22
2

3

23 3
2

1 1

2
2

3 33
2 22

P
P

M
M

h Ф k h Ф

q

k P P q q
hr h

k M M
hr h

b a b a

b a
a

a

b a
a

a

D

D

g = + g = +
s = s = −

Σ −s = e − = + Σ e −  π

Σ −s = e = + Σ e  π

	 (3.6)

3.3. (P, M, q2) нагружение сплошных образцов. Рассмотрим нагружение 
сплошных образцов (a) и (b) под действием осевой силы P, момента M и 
внешнего давления q2. Соотношения (3.6) остаются справедливыми и для это-
го случая, полагая k = [r2

a(1 + h)]/r2
b:

	

( ) ( )

,

exp( ) exp( ) ,
( )

exp exp .
( )

11 22 2

33 2 22
2

23 3
2

2 2
2

3 3 33
2 22

P
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M
M

q

P P P h q q
hr h

M M M h
hr h

b a a
a

a

b a a
a

a

D

D

s = s = −

Σ − +s = e − = + Σ e −  π

Σ − +s = e = + Σ e  π

	 (3.7)
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3.4. (P, M, q1, q2) нагружение трубчатых образцов (mb/m1
a = 1, 0 < h << 1).

Отдельно следует рассмотреть нагружение геометрически подобных труб-
чатых образцов, когда mb/m1

a = 1. Соответствующий этой ситуации вариант ме-
тодики, следуя [1], называется вырожденной условной трубкой. 

В рассматриваемом случае при задании управления (3.2), (3.3) внутри об-
разца (b) образуется виртуальный образец (b′) с r1

b′ = r1
b и r1

b′ = r1
b/(1 + h), геомет-

рически подобный виртуальному образцу (a′) внутри образца (a) с коэффици-
ентом подобия k′ = k(1 + h), такой что r1

a′ = r1
a/(1 + h) и r2

a′ = r2
a (рис. 1). 

Приращение разности давлений Dq, требуемое для обеспечения заданной 
кинематической программы, определяется из равенств:
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r r
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 s − s   = − + c + e − 
  

∫

∫
где q′ – разность граничных давлений в образцах (a′) и (b′). Откуда с точно-
стью до h
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Далее с учетом следствия (2.14) получаем:
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b
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a′

a

bb − a′

a a a′

= + + π −e s +

= + π −e s +

∫

∫

Рис. 1. Схематическое изображение образцов (a) и (b). Штриховкой отмечены внутрен-
ние виртуальные равномощные образцы (a′) и (b′).
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или с точностью до h2:
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Переходя от параметров P к регистрируемым величинам P, получим после 
преобразований с точностью до h соотношения, связывающие компоненты 
тензора напряжений на внешнем и внутреннем радиусах образца (a):
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	 (3.8)

В приближении малых деформаций эти формулы существенно упрощаются:
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В предельном случае сплошных образцов (r1 = 0, q = 0) соотношения (3.8) 
переходят в полученные ранее зависимости (3.7).

В этом варианте, в отличие от рассмотренных выше представлений услов-
ной трубки, конечные соотношения методики задают связь между гранич-
ными значениями компонент тензора напряжений, а не определяют их не-
посредственно. Описанная экспериментальная схема может быть полезной 
в ряде случаев, когда тензор напряжений на одной из границ образца может 
быть определен в силу дополнительных допущений. Примером может слу-
жить задача об идентификации критерия потери несущей способности труб-
чатого образца в условиях трехосного простого нагружения (по прямолиней-
ным траекториям деформаций) в предположениях о склерономности мате-
риала и наличия единой кривой деформирования (функциональной связи 
между интенсивностями девиаторов тензоров напряжений и деформаций). 
При этом идентификационная процедура представляет собой итерационный 
процесс построения кривой деформирования путем последовательного пере-
счета напряжений с границы с меньшим уровнем деформаций на другую, на 
начальном шаге которого используется известное упругое решение.

4. Заключение. В работе дано теоретическое обоснование методу условной 
трубки (и вырожденной условной трубки) для идентификации неоднородно-
го напряженно-деформированного состояния в толстостенных трубчатых и 
сплошных образцах, нагружаемых осевой силой, крутящим моментом, внеш-
ним (а для трубок – и внутренним) давлением, с учетом конечных деформа-
ций. Для описания конечных деформаций используется специальная пара 
энергетически сопряженных инвариантных тензоров напряжений и деформа-
ций из представительного класса тензорных мер коротационного типа. 
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TRIAXIAL LOADING OF THICK-WALLED TUBULAR  
AND SOLID SAMPLES UNDER FINITE DEFORMATIONS.  

THEORY OF THE EXPERIMENT
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Absrtact – The work is devoted to the theoretical study of the problem of 
identifying an inhomogeneous stress-strain state (SSS) in thick-walled tubular 
and solid samples loaded with axial force, torque, external (and for tubes – and 
internal) pressure. Unlike standard tests with thin-walled tubes, in this case it is 
possible to achieve significantly higher values of deformations before the loss of 
bearing capacity of the samples. A well-known approach to solving this problem 
is the conditional tube method, which requires two coordinated experiments on 
similar loading programs to identify the SSS. The paper provides a theoretical 
justification for the conditional tube (and degenerate conditional tube) method, 
taking into account the finite deformations in the sample.

Keywords: theory of experiment, triaxial loading, conditional tube method, finite 
strain, corotational tensor measures, constitutive equations
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