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Рассмотрены регулярные кватернионные дифференциальные уравнения 
возмущенного орбитального движения космического тела (в частности, 
космического аппарата, астероида) в гравитационном поле Земли, в ко-
торых учитываются зональные, тессеральные и секториальные гармони-
ки поля. Эти уравнения, в отличие от классических уравнений, регуляр-
ны (не содержат особых точек типа сингулярности (деления на ноль)) 
для возмущенного орбитального движения в центральном гравитацион-
ном поле Земли. В этих уравнениях основными переменными являются 
четырехмерные переменные Кустаанхеймо–Штифеля (KS-переменные) 
или четырехмерные переменные, предложенные автором статьи, в кото-
рых уравнения орбитального движения имеют более простую и симмет-
ричную структуру в сравнении с уравнениями в KS-переменных. Допол-
нительными переменными в уравнениях являются энергия орбитального 
движения и время. Новая независимая переменная связана со временем 
дифференциальным соотношением, содержащим расстояние от косми-
ческого тела до центра масс Земли (использовано дифференциальное 
преобразование времени Зундмана). Предложены регулярные уравне-
ния возмущенного орбитального движения в кватернионных оскулиру-
ющих (медленно изменяющихся) переменных. Уравнения удобны для 
применения методов нелинейной механики и высокоточных численных 
расчетов, в частности, для прогноза и коррекции орбитального движе-
ния космических аппаратов. В случае орбитального движения в грави-
тационном поле Земли, в описании которого учитываются центральная 
и зональные гармоники поля, приведены первые интегралы уравнений 
орбитального движения, имеющих восьмой порядок; рассмотрены за-
мены переменных и преобразования этих уравнений, которые позволи-
ли получить для изучения орбитального движения замкнутые системы 
дифференциальных уравнений шестого порядка, а также системы диф-
ференциальных уравнений четвертого и третьего порядков, в том числе 
систему дифференциальных уравнений третьего порядка относительно 
расстояния от космического тела до центра масс Земли и синуса геоцен-
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трической широты, а также систему двух интегро-дифференциальных урав-
нений первого порядка относительно этих двух переменных.
Ключевые слова: регулярные кватернионные дифференциальные уравнения 
возмущенного орбитального движения, гравитационное поле Земли, син-
гулярность (особенность), переменные Кустаанхеймо–Штифеля (KS-пере-
менные), модифицированные четырехмерные переменные, энергия орби-
тального движения, преобразование времени Зундмана, кватернионные 
оскулирующие (медленно изменяющиеся) переменные, первые интегралы 
уравнений, расстояние до центра масс Земли, широта, долгота
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1. Введение. Ньютоновские дифференциальные уравнения возмущен-
ной пространственной задачи двух тел в декартовых координатах, лежащие 
в основе небесной механики и астродинамики (механики космического по-
лета), неудобны для изучения движения второго (изучаемого) тела вблизи 
центрального тела, так как они вырождаются (становятся непригодными) 
при соударении второго тела с первым (центральным) телом, когда расстоя-
ние между телами становится равным нулю. Они также неудобны для изуче-
ния орбитального движения по высокоэллиптическим орбитам. Особенность 
(сингулярность) в начале координат создает в задаче двух тел не только теоре-
тические, но и вычислительные трудности. Устранение указанной особенно-
сти классических уравнений небесной механики и астродинамики, порождае
мой силами гравитации, называется регуляризацией (термин введен Леви-Чи-
вита, 1920). Уравнения небесной механики и астродинамики, не имеющие 
этих особенностей, называются регулярными. 

В настоящее время широкое распространение получили кватернионные 
методы регуляризации и регулярные кватернионные модели небесной меха-
ники и астродинамики, имеющие ряд преимуществ аналитического и вычис-
лительного характеров перед другими методами и моделями. Они основаны 
на использовании для описания орбитального движения кватернионов Га-
мильтона – гиперкомплексных переменных, компонентами которых являют-
ся четырехмерные переменные Кустаанхеймо–Штифеля, называемые также 
KS-переменными. 

Эйлер (Euler, 1765) [1] и Леви-Чивита (Levi-Civita, 1920) [2–4] дали реше-
ния одномерной и двумерной задачам о соударении двух тел (в случаях прямо-
линейного и плоского движений). Кустаанхеймо и Штифель (Kustaanheimo, 
Stiefel, 1964–1965) [5, 6] предложили наиболее эффективную регуляризацию 
уравнений возмущенной пространственной (трехмерной) задачи двух тел. Ку-
стаанхеймо дал обобщение теории Леви-Чивита, используя достоинства ме-
тодов теории спиноров. Для регуляризации им вместо одной комплексной 
переменной Леви–Чивита была взята пара комплексных чисел. Штифель для 
регуляризации использовал введенную им специальную четырехмерную квад-
ратную матрицу (KS-матрицу). Регуляризация Кустаанхеймо–Штифеля урав-
нений возмущенной пространственной задачи двух тел наиболее полно изло-
жена в широко цитируемой книге Штифеля и Шейфеле (Scheifele) (1971) [7].
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Автором статьи были предложены кватернионные методы регуляризации 
уравнений возмущенной пространственной задачи двух тел [8, 9]. Один метод 
[8] основан на использовании классических кватернионных матриц, другой 
метод [9] – на использовании кватернионов Гамильтона. В отличие от под-
хода, использующего KS-матрицы Штифеля, эти методы позволили дать на-
глядные геометрическую и кинематическую интерпретации регуляризующе-
му преобразованию Кустаанхеймо–Штифеля, а также позволили дать прямой 
и наглядный вывод более общих регулярных уравнений возмущенной про-
странственной задачи двух тел, из которых вытекают, как частные, регуляр-
ные уравнения Кустаанхеймо–Штифеля. 

Различные аспекты кватернионной регуляризации дифференциаль-
ных уравнений пространственной задачи двух тел, в которой используются 
KS-переменные, рассматривались в работах многих зарубежных ученых, а так-
же в работах автора статьи.

Отметим работы Вальдфогеля (Waldvogel) [10, 11], в которых рассмотрена 
кватернионная регуляризация уравнений пространственной задачи двух тел. 
В работе [11] (“Кватернионы для регуляризации небесной механики: верный 
(истинный) путь”) Вальдфогелем отмечается, что кватернионы “являются 
идеальным инструментом для описания и разработки теории пространствен-
ной регуляризации в небесной механике”. В ней также говорится о приорите-
те автора настоящей статьи в области кватернионной регуляризации. 

 Во многих работах зарубежных и отечественных авторов (в том числе в ра-
ботах Fukushima [12, 13]) приводятся результаты сравнения точности числен-
ного решения уравнений орбитального движения небесных и космических 
тел в KS-переменных и в других переменных. Они свидетельствуют об эф-
фективности использования KS-переменных в задачах небесной механики и 
астродинамики. 

 Нами [14, 15] проведено сравнительное исследование точности численно-
го интегрирования классических ньютоновских дифференциальных уравне-
ний пространственной ограниченной задачи трех тел (Земля, Луна и косми-
ческий аппарат) в декартовых координатах и построенных автором статьи [16, 
17] регулярных кватернионных дифференциальных уравнений этой задачи в 
KS-переменных. Было показано, что регулярные кватернионные уравнения 
позволяют получить значительно более высокую точность прогноза орбиталь-
ного движения в сравнении с уравнениями в декартовых координатах (на 2–7 
порядков в зависимости от эксцентриситета орбиты космического аппарата). 
Эти результаты согласуются с результатами, приведенными в книгах Бордо-
вицыной и Авдюшева [18, 19].

Обзоры работ, посвященных кватернионной регуляризации уравнений 
возмущенной пространственной задачи двух тел, с различной степенью дета-
лизации даны в статьях [20–22].

В настоящей статье развиваются результаты, полученные автором статьи 
в работе [23] в области построения регулярных кватернионных дифференци-
альных уравнений возмущенного орбитального движения в гравитационном 
поле Земли с учетом его зональных, тессеральных и секториальных гармоник 
в четырехмерных KS-переменных и в модифицированных четырехмерных 
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переменных, предложенных автором статьи, в которых уравнения орбиталь-
ного движения имеют более простую и симметричную структуру. Предложе-
ны регулярные дифференциальные уравнения возмущенного орбитального 
движения в кватернионных оскулирующих (медленно изменяющихся) пере-
менных, порождаемые регулярными кватернионными дифференциальными 
уравнениями, имеющими осцилляторный вид. Рассмотрены первые инте-
гралы дифференциальных уравнений орбитального движения в модифици-
рованных переменных в гравитационном поле Земли, в описании которого 
учитываются центральная и зональные гармоники поля, а также рассмотрено 
получение для изучения орбитального движения замкнутых систем диффе-
ренциальных уравнений пониженной размерности (меньшей в сравнении с 
исходными уравнениями размерности).

 2. Векторные уравнения возмущенного орбитального движения в грави-
тационном поле Земли. В векторной форме дифференциальные уравнения 
возмущенного движения центра масс твердого тела (орбитального движения, 
например, космического тела или искусственного спутника) в гравитацион-
ном поле Земли имеют следующий вид:
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где r – геоцентрический радиус-вектор центра масс тела, r  = | r |, ПЕ = П + П*, 
П* = П*(t, r), p = p(t, r, dr/dt); ПЕ = Пearth + П* – потенциал гравитационно-
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зональные гармоники гравитационного поля Земли, П*
ts(t, r) – составляющая 

потенциала, содержащая тессеральные и секториальные гармоники гравита-
ционного поля Земли [24–26]), mE = mearth – масса Земли, f – постоянная тяго-
тения, p – вектор возмущающего ускорения центра масс тела от действующих 
на тело негравитационных сил.

Систему координат Oξ1ξ2ξ3 (ξ), в которой рассматривается орбитальное 
движение тела, введем следующим образом: ее начало O поместим в центр 
Земли, ось Oξ3 направим к северному полюсу Земли, а ось Oξ1 – в точку ве-
сеннего равноденствия. Декартовые координаты центра масс тела в этой си-
стеме координат обозначим через ξk (k = 1, 2, 3). 

Составляющие потенциала П* являются функцией координат ξk и имеют 
следующий вид:
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где ,2 2 2
1 2 3r = ξ + ξ + ξ  R – средний экваториальный радиус Земли, Jn – без-

размерные постоянные, характеризующие фигуру Земли, Pn – полином Ле-
жандра n-го порядка, J – угол между осью Ox3 и радиус-вектором r, φ – гео-
центрическая широта, Cnk, Snk – безразмерные постоянные, характеризующие 
фигуру Земли, Pnk – присоединенные функции Лежандра, λ – географическая 
долгота.

В работах [27, 28] автором статьи были предложены кватернионные диф-
ференциальные уравнения возмущенного движении спутника (ИСЗ) в гра-
витационном поле Земли с учетом центральной и зональных гармоник поля. 
В уравнениях вместо переменных Кустаанхеймо–Штифеля были использо-
ваны модифицированные четырехмерные переменные, предложенные в этих 
работах. Предложенные уравнения движения спутника в модифицированных 
переменных имеют более симметричную и простую структуру в сравнении 
с уравнениями в KS-переменных. В работе [23] эти результаты автором ста-
тьи были развиты. Получены кватернионные дифференциальные уравнения 
возмущенного движения искусственного спутника в гравитационном поле 
Земли с учетом его зональных, тессеральных и секториальных гармоник как 
в четырехмерных переменных Кустаанхеймо–Штифеля, так и в модифици-
рованных четырехмерных переменных. Эти уравнения, в отличие от класси-
ческих уравнений, регулярны (не содержат особых точек типа сингулярности) 
для возмущенного движения спутника в центральном гравитационном поле 
Земли. 

Рассмотрим регуляризованные кватернионные дифференциальные урав-
нения возмущенного орбитального движения в гравитационном поле Земли 
в переменных Кустаанхеймо–Штифеля и в модифицированных четырехмер-
ных переменных.

3. Регуляризованные уравнения возмущенного орбитального движения в гра­
витационном поле Земли в четырехмерных переменных Кустаанхеймо–Шти­
феля. В случае использования для описания орбитального движения четырех-
мерных KS-переменных ujks (  j = 0, 1, 2, 3) уравнения орбитального движения 
(2.1) записываются нами во вращающейся системе координат h, ось η1 кото-
рой направляется по радиус-вектору r центра масс тела. Ориентация системы 
координат h в инерциальной системе координат ξ характеризуется четырех-
мерными параметрами Эйлера (Родрига–Гамильтона) lj

* (  j  = 0, 1, 2, 3). Де-
картовые координаты ξk (k = 1,2,3) центра масс тела в системе координат ξ 
связаны с расстоянием r от центра масс тела до центра гравитационного поля и 
с параметрами Эйлера lj

*, а также с KS-переменными ujks соотношениями (3.1):
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Поэтому функции γ и λ, присутствующие в потенциалах П*
z и П*

ts (соотно-
шения (2.2) и (2.3)) могут быть представлены через расстояние r и параметры 
Эйлера lj

*, а также через KS-переменные ujks следующим образом:

	 ( ) ( )sin cos ,3
1 3 0 2 1 3 0 2

2
2 ks ks ks ksu u u u

r r
∗ ∗ ∗ ∗ξ

g = j = J = = l l − l l = + 	 (3.2)

	 ( ) ( )
,

arctg arctg arctg ,

E

1 2 0 3 1 2 0 32
2 2 2 2 2 2 2 2

1 0 1 2 3 0 1 2 3

2 2

a

ks ks ks ks
a

ks ks ks ks

t

u u u u

u u u u

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

l = l − W

l l + l l −ξ
l = = =

ξ l + l − l − l + − −

	
(3.3)

где la и WE – абсолютная долгота и угловая скорость суточного вращения 
Земли.

Кватернионные дифференциальные уравнения возмущенного орбиталь-
ного движения в гравитационном поле Земли с учетом его зональных, тес-
серальных и секториальных гармоник в KS-переменных имеют следующий 
вид [23]:

	

2

2

1 1 1 ( )
,

2 2 4

2 scal , ,

ks
ks

ks

ts ks
ks ks

d r
h r

d

ddh dt
r r

d t d d

∗
∗ ∗

∗∗
∗

∂ Π
− = −

∂t

∂Π  
= + = = t ∂ t t 

u
u q

u

u
q u u 

	 (3.4)

где = + + + = − − −0 1 2 3 0 1 2 3,ks ks ks ks ks ks ks ks ks ksu u u u u u u uu i j k u i j k , i, j, k – 
векторные мнимые единицы Гамильтона, scal() – скалярная часть кватерни-
она, заключенного в круглые скобки.

Дифференциальное уравнение для расстояния r от центра масс тела до 
центра масс Земли имеет вид (3.5):

	 ( )( ) .
2

E2
2 2 scal ks

d r
h r fm r

d
∗ ∗− − = − Π +

t
u Q 	 (3.5)

Фигурирующая в уравнениях (3.4) и (3.5) полная энергия h* единицы мас-
сы тела определяется соотношениями (3.6):

	 ( ), ( ) ( ),,
2 233

0 0

2
2 jks jks

j j

du du
h t h r r r

dt dr
∗ ∗

ξ
= =

   
= h + Π = + Π = + Π      t∑ ∑r 	 (3.6)

в которых h – кеплеровская энергия.
Кватернион Q обусловлен действующим не потенциальным возмущением 

p и не центральностью гравитационного поля Земли и имеет вид:

	
0 1 2 3

1 2 3

1
, ,

2

( , , ) .

ks
ks

q q q q

t p p p

∗
∗ ∗ ∗ ∗ ∗ ∗

ξ

ξ ξ ξ ξ

∂Π
= − = + + + = −

∂

= = + +

Q q q i j k i u p
u

p p r v i j k

 
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Расстояние r до центра масс Земли, проекции радиус-вектора r центра 
масс тела и его вектора орбитальной скорости v на оси инерциальной системы 
координат ξ находятся через KS-переменные и их производные с помощью 
кватернионных соотношений (3.7): 

	

2 2 2 2
0 1 2 3 ,

2
, 2 .

ks ks ks ks ks ks

ks ks
ks ks ks ks

r u u u u

d d d
dt dt r d

ξ
ξ ξ

= = + + +

= = = =
t

u u

r u u
r u i u v u i u i



     

	 (3.7)

Обозначим

	 ( ) ( ) ( ), , ,E
2

n

z z n n
n

R
r r r fm J P

r

∞
+ ∗

=

 Π g = Π g = g  ∑ 	 (3.8)

	

( ) ( )

( ) ( ) ( )( )

, , , ,

cos sin .E
2 1

ts ts

nn

n nk nk nk
n k

r r r

R
fm J P C k S k

r

+ ∗

∞

= =

g l = g l =

 = − g l + l  

Π Π

∑ ∑ 	 (3.9)

Из кватернионных уравнений (3.4) с учетом обозначений (3.8) и (3.9) сле-
дуют скалярные дифференциальные уравнения возмущенного орбитального 
движения в гравитационном поле Земли с учетом его зональных, тессераль-
ных и секториальных гармоник в KS-переменных (3.10) и (3.11): 

	  

, , , , ,
( )

2

2

2 1
1 22 2

1 2

1 1 1
2 2

1 1
0 1 2 3

24

jks
jks jks jks

ts
j

j j

d u
h u u u

r r rd

rq j
u u

+ + +
∗ +

+
∗

    g ∂Π ∂Π ∂Π
− = − + −     ∂g ∂   ∂g  t

 ∂Π ∂ξ ∂ξ
− ξ − ξ + = ∂l ∂ ∂ ξ + ξ

	 (3.10)

	 , .
3

0

2 jksts
j ks ks

j

dudh dt
r q r

d t d d

∗∗
∗

=

 ∂Π
= + = = t ∂ t t ∑ u u 	 (3.11)

Здесь
	

( )
, , , ; ,

, ,
0 2 1 3 2 0 3 1

2 2 2 2
1 0 1 2 3 2 1 2 0 32

ks ks ks ks ks ks ks ks z ts

ks ks ks ks ks ks ks ks

u u u u u u u u

u u u u u u u u

+ + + + + + += = = = Π = Π + Π

ξ = + − − ξ = −

П+
z, П+

ts и П*
ts имеют вид (3.8), (3.9) и (2.3) соответственно.

4. Регуляризованные уравнения возмущенного орбитального движения в гра­
витационном поле Земли в модифицированных четырехмерных переменных. 
Автором статьи также предложены [23] другие уравнения возмущенного 
орбитального движения, которые, обладая всеми достоинствами выше при-
веденных уравнений в KS-переменных, имеют более простую и симметрич-
ную структуру. Для этого вместо KS-переменных были использованы другие 
(модифицированные) четырехмерные переменные, введенные автором статьи 
в работах [27, 28].
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В случае Кустаанхеймо–Штифеля ось η1 введенной ранее вращающей-
ся системы координат h была направлена нами по радиус-вектору r центра 
масс тела. Координаты ξk тела в системе координат ξ связаны в этом случае с 
KS-переменными ujks соотношениями (3.1).

Направим по радиус-вектору r не ось η1 системы координат h, а ось η3. 
В  этом случае все выше приведенные кватернионные уравнения разде-
ла 3 сохраняют свой вид, лишь вместо орта i необходимо взять орт k. Но-
вые четырехмерные переменные uj, определяемые через параметры Эйлера 
(Родрига–Гамильтона) lj ориентации этой новой вращающейся системы 
координат h, будут связаны с декартовыми координатами ξk соотношениями 
(4.1), отличными от соотношений (3.1):

	

( ) ( )
( ) ( )

( )

,

,

,

1 1 3 0 2 1 3 0 2

2 2 3 0 1 2 3 0 1

2 2 2 2 2 2 2 2
3 0 1 2 3 0 1 2 3

2 2

2 2

r u u u u

r u u u u

r u u u u

ξ = l l + l l = −

ξ = l l − l l = +

ξ = l − l − l + l = − − +
	 (4.1)

	 , , , , ; .2 2 2 2
0 0 0 1 2 31 2 3i iu r u r i r u u u u= l = − l = = + + +

Расстояние r до центра масс Земли, проекции радиус-вектора r центра масс 
тела и его вектора скорости v на оси инерциальной системы координат ξ на-
ходятся через модифицированные четырехмерные переменные uj и их произ-
водные с помощью кватернионных соотношений (4.2), отличных от соотно-
шений (3.7):

	
, ,

, .

2 2 2 2
0 1 2 3 0 1 2 3

2
2

r u u u u u u u u

d d d
dt dt r d

ξ
ξ ξ

= = + + + = + + +

= = = =
t

u u u i j k

r u u
r u k u v u k u k



     

	 (4.2)

Кватернионные уравнения орбитального движения в модифицированных 
четырехмерных переменных uj имеют вид уравнений (4.3):

( ) , , ,
2

2

1 1 1
2scal

2 2 4
tsd r dh d dt

h r r r
d t d dd

∗∗ ∗
∗ ∂Π∂ Π  − = − = + = = ∂ t ∂ t tt  

u u
u q q u u

u
 

	 (4.3)

которые совпадают по своей форме с кватернионными уравнениями орби-
тального движения (3.4) в KS-переменных.

В этих уравнениях кватернион не потенциальных возмущений определяет-
ся соотношением ,ξ= −q k u p 

 отличным от соотношения для кватерниона 
,ks

∗
ξ= −q i u p 

 фигурирующего в кватернионных уравнениях (3.4) возму-
щенного орбитального движения в KS-переменных. 

Переменные γ и λ, фигурирующие в потенциале гравитационного поля 
Земли, выражаются через модифицированные переменные uj с помощью со-
отношений (4.4) и (4.5), отличных от соотношений (3.2) и (3.3):

	 ( )sin cos ,2 2 2 2 2 2 2 23
0 1 2 3 0 1 2 3

1
u u u u

r r
ξ

g = j = J = = l − l − l + l = − − + 	 (4.4)
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	 , arctg arctg arctg .2 3 0 1 2 3 0 12
E

1 1 3 0 2 1 3 0 2
a a

u u u u
t

u u u u
l l − l l +ξ

l = l − W l = = =
ξ l l + l l −

	 (4.5)

Учитывая равенство ,2 2 2 2
0 1 2 3u u u u r+ + + =  представим соотношение (4.4) 

в двух различных формах:

	 ( ) ( ) ( ) ( ) .2 2 2 2 2 2 2 2
1 2 0 3 1 2 0 3

2 2
1 2 2 1 1 1u u u u

r r
g = − l + l = l + l − = − + = + −  	(4.6)

Из сопоставления (4.6) с (3.2) видно, что выражения для перемен-
ной γ (синуса геоцентрической широты φ), от которой зависит потенциал 
П* = П*

z(r, g) + П*
ts(r, g, l) , описывающий зональные, тессеральные и сектори-

альные гармоники гравитационного поля Земли, через новые переменные 
могут быть представлены в двух различных формах и имеют более простую и 
симметричную структуру, что и позволяет получить более простые и симмет-
ричные, чем в случае использования KS-переменных, скалярные уравнения 
возмущенного орбитального движения, имеющие вид (4.7) [23]:
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	 (4.7)
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= − W + =∑  t ∂l t t 

где
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u u
∂l ∂l

= ξ + ξ = ξ − ξ
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	 , ,0 0 3 1 2 2 1 1 0 2 1 3 3 1q u p u p u p q u p u p u p= + − = − +

	 , ,2 0 1 2 3 3 2 3 1 1 2 2 3 3q u p u p u p q u p u p u p= − − + = + +

	 ( ) ( ) ( ) ( ), , , , , , .z ts z tsr r r r r r+ + + ∗ ∗g + g l = g + g lΠ = Π Π Π Π
В этих уравнениях полная энергия h* единицы массы тела определяется 

соотношениями (3.6), в которых вместо переменных ujks необходимо взять 
переменные uj:
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	 ( , ) ( ) ( ).,
2 2

3 3

0 0

2
2 j j

j j
h h t h r r r

r

du du
dt d

∗ ∗
ξ

= =

   
= + = + Π = + Π      

   
Π ∑ ∑ t

r

Уравнения движения тела в модифицированных четырехмерных перемен-
ных, как уже отмечалось, имеют более простую и симметричную структуру 
в сравнении с уравнениями в KS-переменных, что упрощает их аналитическое 
и численное исследование. 

Отметим, что модифицированные переменные uj связаны с KS-перемен-
ными ujks соотношениями

	
( )( ) ( )( )

( )( ) ( )( )
/ , / ,

/ , /
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u u u u u u u u u u

= + + + = − − − +

= − + − − = − + −

и являются их линейными композициями.
В кватернионной записи эти соотношения имеют следующий вид:
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5. Регуляризованные уравнения возмущенного орбитального движения в гра­
витационном поле Земли в кватернионных оскулирующих элементах (медленно 
изменяющихся переменных). Для вывода этих уравнений используем метод ва-
риации постоянных интегрирования. 

Полагая правую часть 

	
( )1 1

2 4
r

r
∗∂ Π

= −
∂

f q
u

	 (5.1)

первого кватернионного уравнения из системы (4.3) регуляризованных урав-
нений возмущенного орбитального движения в гравитационном поле Земли 
в модифицированных переменных равной нулю, получаем: 

	  , .
2

2

1
0 const

2
d

h h
d

− = =
t
u

u  	 (5.2)

Этим кватернионным уравнением описывается невозмущенное орбиталь-
ное движение в центральном гравитационном поле Земли (невозмущенное 
кеплеровское движение космического тела). В нем h – кеплеровская энергия, 
определяемая соотношением

	 .
2 2

3 3
E

0 0

2
2 constj j E

j j

du dufm fm
h r

dt r d rr= =

   
= = =   t   

− −∑ ∑

Величины q, П*, П*
ts в этом случае равны нулю. 

Общее решение уравнения (5.2) для энергии h < 0 имеет следующий вид:
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1
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k h

= t + t = − t + t  t
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u
u a b a b

	 (5.2)

где 0 1 2 3= a + a + a + ai j ka  и 0 1 2 3= b + b + b + bi j kb  – произвольные кватер-
нионные постоянные интегрирования.

Формулы обратного перехода от переменных a и b к переменным u и  
du/dt имеют вид (5.3):

( ) ( ) ( ) ( )
/

, , .
1 2

1 1 1
cos sin sin cos

2
d d

k k k k k h
k d k d

 = t − t = t + t = − t t  

u u
u ua b 	 (5.3)

Полагая f ≠ 0 (q ≠ 0, П* ≠ 0, П*
ts ≠ 0), а энергию h переменной величиной, 

будем рассматривать соотношения (5.2) как формулы замены кватернионных 
переменных u и du/dt на новые кватернионные переменные a и b (кватер-
нионные оскулирующие (медленно изменяющиеся) переменные). При этом 
кеплеровскую энергию h заменим на полную энергию h* орбитального дви-
жения, определяемую соотношениями  
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Поэтому формулы замены кватернионных переменных u и du/dt на новые 
кватернионные переменные a и b будут иметь вид (5.4):
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	 (5.4)

а формулы обратного перехода от переменных a и b к переменным u и du/dt 
вид (5.5):
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Поясним второе из соотношений (5.4). Дифференцируя первое из соотно-
шений (5.4) по переменной t, получим:

	 ( ) ( )( ) ( ) ( )sin cos cos sin .d d d
k k k k k

d d d
∗ ∗ ∗ ∗ ∗ = − t + t + t + t t t t 

u a b
a b 	 (5.6)

Потребуем, чтобы выражение в квадратных скобках полученного соотно-
шения (5.6) было равно нулю:
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	 ( ) ( )cos sin∗ ∗t + t =
t t

0
d d

k k
d d
a b

	 (5.7)

Тогда соотношение (5.6) принимает тот же вид, что и второе из соотноше-
ний (5.4), которое формально получается в результате дифференцирования 
первого из соотношений (5.4) в случае постоянных a и b.

Используя соотношения (5.4) как формулы замены кватернионных пере-
менных u и du/dt на новые кватернионные переменные a и b, получим из 
осцилляторных кватернионных уравнений (4.3) возмущенного орбитально-
го движения в модифицированных четырехмерных переменных следующую 
нормальную систему  дифференциальных уравнений (5.8) и (5.9) возмущен-
ного орбитального движения в гравитационном поле Земли в кватернионных 
элементах a и b во времени t для h* < 0 (систему уравнений возмущенного 
эллиптического кеплеровского движения): 

	 ( ) , ( ) ,1 1
sin cos

d d
k k

d dk k
∗ ∗

∗ ∗
= − t = t

t t
f f

a b 	 (5.8)

	 , ,2 scaltsdh d dt
r r

d t d d

∗∗ ∂Π  = + = = t ∂ t t 

u
q u u  	 (5.9)

где

	
/( ) , , .

1 2
1 1 1

vario
2 4 2

r
r k h

∗
∗ ∗

ξ
∂ Π  = − = − = = − ∂  

f q q k u p
u

 

Отметим, что производные da/dt и d b/dt, определяемые уравнениями 
(5.8), удовлетворяют использованному ранее условию (5.7) и что форму-
лы обратного перехода от переменных a и b к переменным u и du/dt имеют 
вид (5.5).

Второе уравнение из подсистемы уравнений (5.9) для времени t в развер-
нутой записи имеет вид (5.10):

	 ( ) ( ) ( ) ( ) ( )sin2 2cos sin cos
dt

r k k k k
d

∗ ∗ ∗ ∗= = t + t t + + t =
t

a a a b b a b b   

	

( ) ( )
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( ) ( ).

2 2 2 2 2
0 1 2 3

0 0 1 1 2 2 3 3

2 2 2 2 2
0 1 2 3
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2sin cos

sin

k

k k

k

∗

∗

∗

= t a + a + a + a +

+ t t a b + a b + a b + a b +

+ t b + b + b + b

	

(5.10)

Декартовые координаты ξk центра масс тела в инерциальной системе коор-
динат ξ находятся через компоненты aj и bj кватернионных оскулирующих 
элементов a и b с помощью кватернионных соотношений (5.11) и (5.12): 
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(5.11)
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(5.12)

где верхняя черта по-прежнему символ сопряжения.
Отметим, что регулярные дифференциальные уравнения (5.8) и (5.9) 

в  кватернионных оскулирующих элементах a и b справедливы для возмущен-
ного эллиптического кеплеровского движения центра масс КА.

6. Регуляризованные уравнения орбитального движения в гравитационном 
поле Земли с учетом его центральной и зональных гармоник в модифицированных 
четырехмерных переменных и их первые интегралы. Уравнения орбитального 
движения в гравитационном поле Земли с учетом его центральной и зональ-
ных гармоник в модифицированных переменных uj получаются из уравнений 
(4.7) в случае, когда возмущающее ускорение p центра масс тела отсутствует, 
т.е. когда величины qj = 0, а также когда потенциал гравитационного поля 
Земли П+ = П+

z(r, g) (П+
ts = 0). 

Эти уравнения имеют следующий вид:
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1 1 1
0 3

2 2
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h u u k
r rd

+ +
∗  ∂Π ∂Πg −
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	 (6.1)
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	 (6.3)

Здесь 
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Π Π

	 (6.4)
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В уравнениях (6.1) и (6.2) h* – постоянная полная энергия единицы массы 
тела определяемая соотношениями (6.5):

	

( )

( ) ( )
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, .

,
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3 3
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0 0
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du dufm fm
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r r
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   
= =   t   

 g = g∑  
 

Π

− −∑ ∑

Π

	 (6.5)

В них h – кеплеровская энергия.
Первое из соотношений (6.5) – интеграл энергии орбитального движения. 
Уравнения (6.1)-(6.3) орбитального движения, дополненные соотношени-

ями (6.4), образуют замкнутую систему дифференциальных уравнений девято-
го порядка относительно модифицированных переменных uj и времени t. Эти 
уравнения обладают всеми достоинствами уравнений орбитального движе-
ния в KS-переменных, которые в рассматриваемом случае образуют систему 
дифференциальных уравнений того же порядка. Однако правые части уравне-
ний (6.1) и (6.2) имеют более простую и симметричную структуру в сравнении 
с уравнениями орбитального движения в KS-переменных, получающимися 
в рассматриваемом случае из уравнений (3.10) и (3.11) при П*

ts = 0, П+ = П+
z, 

qj = 0 и имеющими следующий вид:
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Отметим, что уравнения (6.1) и (6.2) могут рассматриваться независимо 
от уравнения (6.3) для времени t и образуют замкнутую систему дифферен-
циальных уравнений восьмого порядка относительно модифицированных 
переменных uj.

Дифференциальные уравнения орбитального движения (6.1) и (6.2) имеют 
первый интеграл (6.6):

( )
2

3 3

0 0

21 1 1 1
, const, const.

2 4 4 4
j

j j
j z H E

du
H h u r c fm h

d= =

∗ + ∗ 
= Π g = = = = t 

− +∑ ∑ 	 (6.6)

Здесь H имеет смысл функции Гамильтона, с помощью которой уравнения 
орбитального движения записываются в гамильтоновой форме [23], в которой 
обобщенными координатами являются модифицированные переменные uj, а 
обобщенными импульсами – величины duj/dt.

Дифференциальные уравнения орбитального движения (6.1) и (6.2) также 
имеют первые интегралы (6.7):

	 .0 3 1 2
3 0 1 2 1 2const, constdu du du duu u c u u c

d d d d
− = = − = =

t t t t
	 (6.7)

Известному билинейному соотношению в KS-переменных [7] 

	 0 31 2
1 0 3 2 0du dudu duu u u u

d d d d
− + − =

t t t t
соответствует в наших модифицированных переменных другое билинейное 
соотношение, имеющее вид [23]:

	 0 3 1 2
3 0 2 1 0.

du du du du
u u u u

d d d d
− + − =t t t t

	 (6.8)

Из сопоставления первых интегралов (6.7) с билинейным соотношением 
(6.8) следует, что постоянные интегрирования c1 и c2 должны быть связаны 
условием
	 c1 = c2.

Таким образом, уравнения орбитального движения (6.1) и (6.2) в модифи-
цированных переменных имеют три первых интеграла (6.6) и (6.7).

7. Преобразование уравнений орбитального движения в гравитационном поле 
Земли с учетом его центральной и зональных гармоник в модифицированных 
четырехмерных переменных, построение замкнутых систем уравнений меньшей 
размерности и их первых интегралов. Из системы дифференциальных уравне-
ний орбитального движения (6.1) и (6.2) в модифицированных переменных 
uj восьмого порядка можно получить системы дифференциальных уравнений 
орбитального движения в других переменных меньшей размерности.

Введем новые переменные:
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2 2 2 2
0 3 1 2

2 2 2 2
0 1 2 3

1 1
1 1

2 2
u u r u u r

r u u u u

k = + = g + n = + = − g

k + n = = + + + 	 (7.1)
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	 (7.2)

Из уравнений (6.1) и (6.2) следует следующая замкнутая система диффе-
ренциальных уравнений (7.3)–(7.8) в переменных k, a, n, b, определяемых 
соотношениями (7.1) и (7.2):
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где

	 , , , , ,1 2 1 2 constr h
r r

∗k − n n k
= k + n g = g − = − g + = =

k + n
	 (7.7)

	 ( ) ( ) ( ), , .E
2

n

z z n n
n

R
r r r fm J P

r

∞+ ∗

=

 g = g = g∑  
 

Π Π 	 (7.8)

Левые части этой системы дифференциальных уравнений являются линей-
ными с постоянными коэффициентами. В отличие от системы дифференци-
альных уравнений (6.1) и (6.2) орбитального движения в модифицированных 
переменных uj, имеющей восьмой порядок, эта система дифференциальных 
уравнений в переменных κ, a, n, b имеет шестой порядок.

С учетом соотношений (7.7) уравнения (7.3)–(7.6) принимают вид:
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где ( ) ( ), / ,r = k + n g = k − n k + n  а потенциал П+
z имеет вид (7.8). 
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Дифференциальные уравнения (7.3)–(7.6) или (7.9)–(7.12) орбитального 
движения в переменных κ, a, n, b имеют первые интегралы (7.13) и (7.14):

	 , ,
2

4 const
d

c c
d k k

k  − ak = = t 
	 (7.13)

	 , .
2

4 const
d

c c
d n n

n  − bn = = t 
	 (7.14)

Перейдем в первых интегралах (7.13) и (7.14) от переменных κ, a, n, b 
к исходным переменным uj и duj/dt в соответствии с формулами (7.1) и (7.2). 
Получим соотношения:
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u u c c
d d k k
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 − = − = t t 
	 (7.16)

Из сравнения этих соотношений с первыми интегралами (6.7) в перемен-
ных uj следует, что постоянные интегрирования ck, cn и c1, c2, фигурирующие 
в первых интегралах уравнений орбитального движения в переменных κ, a, n, 
b и в переменных uj, связаны соотношениями (7.17):

	 , ; , .2 2
1 2 1 2

1 1
4 4

2 2
c c c c c c c ck n k n= − = − = − = − 	 (7.17)

Поскольку, как было установлено ранее, постоянные интегрирования c1 и 
c2 связаны условием c1 = –c2, то постоянные интегрирования ck и cn должны 
быть равными: ck = cn.  

Складывая левые и правые части уравнений (7.10) и (7.12) и интегрируя 
найденное уравнение, получим следующий первый интеграл дифференциаль-
ных уравнений орбитального движения (7.3)–(7.6) или (7.9)–(7.12) в перемен-
ных κ, a, n, b:
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где ( ) ( ), / .r = k + n g = k − n k + n
Ранее полученный первый интеграл уравнений в переменных uj имеет вид 

(6.6), где, как уже отмечалось, H – функция Гамильтона канонической (га-
мильтоновой) формы уравнений орбитального движения в модифицирован-
ных переменных uj.

Из интеграла (6.6) получаем, учитывая, что 

	 , ,
2

3 3
2

0 0

j
j

j j

du
u r

d= =

 
= a + b = = k + n∑ ∑ t 
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первый интеграл (7.19) в переменных κ, a, n, b, в котором постоянная инте-
грирования cab определена через постоянную тяготения f и массу Земли mE, а 
также через функцию Гамильтона H:

    ( ) ( )( ), .1 1
2 2 const

2 2z H Er h c c fm H∗ ∗
aba + b + k + n Π g − = = = = = 	 (7.19)

Из сравнения соотношений (7.18) и (7.19) следует, что полученному пер-
вому интегралу (7.18) дифференциальных уравнений орбитального движе-
ния (7.3)–(7.6) или (7.9)–(7.12) в переменных κ, a, n, b соответствует первый 
интеграл (6.6) уравнений (6.1) и (6.2) в модифицированных переменных uj, 
и что постоянные интегрирования cab и cH этих первых интегралов связаны 
соотношением:

	 ( )/ .2 1 2H Ec c fmab = =  

Также отметим, что полученным первым интегралам (7.13) и (7.14) диффе-
ренциальных уравнений орбитального движения (7.3)–(7.6) или (7.9)–(7.12) в 
переменных κ, a, n, b соответствуют квадраты первых интегралов (6.7) урав-
нений (6.1) и (6.2) в модифицированных переменных uj.

С помощью первых интегралов (7.13) и (7.14) уравнения (7.10) и (7.12) для 
переменных a и b могут быть исключены из рассмотрения и вместо системы 
дифференциальных уравнений (7.9)–(7.12) шестого порядка будем иметь для 
изучения орбитального движения следующую систему дифференциальных 
уравнений четвертого порядка в переменных k и n:

	 ,
( )

22

2 2

1 2
2

z zd d
c h

d rd

+ +
∗

k

   ∂Π ∂Πk k n − − − k = − + k       k t ∂g ∂t k + n    
	 (7.20)
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,
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2 2

1 2
2

z zd d
c h

d rd

+ +
∗

k

   ∂Π ∂Πn n k   − − − n = − n   n t ∂g ∂ t   k + n   
	 (7.21)

где ( ) ( ), / ,r = k + n g = k − n k + n  а потенциал П+
z имеет вид (7.8).

Кроме системы дифференциальных уравнений (7.20) и (7.21) четвертого 
порядка для изучения орбитального движения можно использовать следую-
щую более простую систему дифференциальных уравнений (7.22)–(7.25) того 
же порядка в переменных κ, a, n, b, получающуюся в результате объединения 
первых интегралов (7.13) и (7.14) и уравнений (7.10) и (7.12):

	 , ,
2

4 const
d

c c
d k k

k  − ak = = t 
	 (7.22)
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d d r d
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∗ ∗ ∂Π ∂Πa k n k

− = − + =  t t ∂g ∂ tk + n 
	 (7.23)



	 РЕГУЛЯРНЫЕ КВАТЕРНИОННЫЕ УРАВНЕНИЯ ОРБИТАЛЬНОГО...� 93

	 , ,
2
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d

c c
d n n

n  − bn = = t 
	 (7.24)
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z zd d d

h h
d d r d

+ +
∗ ∗ ∂Π ∂Πb n k n

− = − =  t t ∂g ∂ tk + n 
	 (7.25)

Здесь в правые части уравнений (7.23) и (7.25) после нахождения частных 
производных необходимо использовать равенства r  = k + n, g = (k – n)/(k + n).

Переменные a и b связаны соотношением (7.18) (входят в первый интеграл 
уравнений орбитального движения в виде их суммы). Поэтому уравнение для 
переменной a или b может быть исключено из состава системы уравнений 
(7.22)–(7.25). В итоге будем иметь замкнутую систему трех дифференциаль-
ных уравнений первого порядка относительно переменных κ, n, a:
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или относительно переменных κ, n, b:
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7.1. Уравнения для расстояния и синуса геоцентрической широты. В уравне-
ния орбитального движения в гравитационном поле Земли с учетом его зо-
нальных гармоник входит потенциал П*

z(r, g), являющийся функцией рассто-
яния r космического тела до центра масс Земли и переменной g = sin j (точнее, 
функцией геоцентрической широты j). Поэтому представляет интерес полу-
чение замкнутой системы дифференциальных уравнений относительно лишь 
переменных r и γ.

Для этого умножим уравнение (7.13) на ν, а уравнение (7.14) – на κ и сло-
жим левые и правые части полученных уравнений. Преобразуем новое полу-
ченное уравнение с учетом равенства cn = ck и соотношений

	 ( ) ( ), , .1 1
1 1

2 2
r r rk = g + n = − g k + n =
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В итоге получаем дифференциальное уравнение, содержащее переменные 
r и γ: 

    ( ) ( ) ( ) ,
2 2

2 24 1 2 1 1 4
d dr dr d

r r r c
d d d d k

 g g     + − a + b − g + + + g =      t t t t      
 	 (7.26)

где
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−Π g Π

( / ) ,E1 4Hc fm ck=  – постоянные величины, h* – постоянная полная энергия 
единицы массы тела, определяемая соотношениями
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= =

   
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Π − −∑ ∑ 	

в которых h – кеплеровская энергия. 
Уравнение (7.26) – первый интеграл дифференциальных уравнений орби-

тального движения, содержащий лишь переменные r и g = sin j (расстояние r и 
синус геоцентрической широты j) и их первые производные по независимой 
переменной τ.

Таким образом, первый интеграл (7.26) и дифференциальное уравнение 
(7.27) для расстояния r от центра масс тела до центра масс Земли: 

	 ( ) ( ) ,
2

2
E E2

2 z z
d r

h r fm r fm r
r rd

∗ + ∗∂ ∂
− = − Π = − Π

∂ ∂t
	 (7.27)

вытекающее в рассматриваемом случае из дифференциального уравнения 
(3.5), образуют замкнутую систему дифференциальных уравнений третьего 
порядка относительно расстояния r и переменной g = sin j, которая может 
быть использована для изучения орбитального движения в гравитационном 
поле Земли с учетом его зональных гармоник.

Получим дифференциальное уравнение второго порядка относительно 
переменной g = sin j. Продифференцируем дважды по независимой перемен-
ной τ соотношения

	 ( ) ( ) ( ) ( ),2 2 2 2
0 3 1 22 1 2 1u u r u u r+ = g + + = − g

и учтем дифференциальные уравнения орбитального движения (6.1) и (6.2) 
для переменных uj, а также дифференциальное уравнение (7.27) для расстоя
ния r. Получим следующие дифференциальные уравнения второго порядка 
относительно переменной g = sin j:

	
( ) ( )

( ) ,

2

E2

2 2
1 2

2 1

1
1 4 0

z

z z

d dr d
r h r fm r

d d rd

du du
r

r r d d

∗ +

+ +

g g ∂ + − + − Π − g + t t ∂t  
  ∂Π ∂Πg +     + − g − + + =        ∂g ∂ t t      



	 РЕГУЛЯРНЫЕ КВАТЕРНИОННЫЕ УРАВНЕНИЯ ОРБИТАЛЬНОГО...� 95

	
( ) ( )

( ) .

2

E2

2 2
0 3

2 1

1
1 4 0

z

z z

d dr d
r h r fm r

d d rd

du du
r

r r d d

∗ +

+ +

g g ∂ + + + − Π + g − t t ∂t  
  ∂Π ∂Πg −     − + g − − + =        ∂g ∂ t t      

Складывая полученные уравнения, найдем:
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где 
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  g g g    = g + − −      t t t t− g      

Отметим, что для получения разности a – b уравнение (7.22) было умноже-
но на –ν, а уравнение (7.23) – на κ и затем левые и правые части полученных 
уравнений были сложены с учетом равенства ck = cn. 

Из уравнения (7.28) получаем окончательное дифференциальное уравне-
ние второго порядка относительно переменной g = sin j:  
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	 (7.29)

где
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Π Π

Уравнения (7.27) и (7.29) образуют замкнутую систему двух дифференци-
альных уравнений второго порядка относительно переменных r и g = sin j.

В заключение приведем полученные нами системы двух интегро-диффе-
ренциальных уравнений первого порядка относительно расстояния r косми-
ческого тела до центра масс Земли и синуса геоцентрической широты j (пере-
менной g = sin j), учитывающие зональные гармоники гравитационного поля 
Земли и имеющие вид (7.30), (7.31) или (7.32), (7.33):
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 	(7.31)
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	 (7.33)

Заключение. Рассмотрены регулярные кватернионные дифференциаль-
ные уравнения возмущенного орбитального движения космического тела 
(в частности, космического аппарата, астероида) в гравитационном поле 
Земли, имеющие относительно основных переменных осцилляторный вид. 
В этих уравнениях учтены зональные, тессеральные и секториальные гармо-
ники поля. Эти кватернионные уравнения, в отличие от классических урав-
нений, регулярны для возмущенного орбитального движения в центральном 
гравитационном поле Земли (не содержат особых точек типа сингулярности 
(деления на ноль), порождаемых действующей центральной гравитационной 
силой). В уравнениях основными переменными являются широко используе-
мые в настоящее время четырехмерные переменные Кустаанхеймо–Штифеля 
(KS-переменные) или четырехмерные переменные, предложенные автором 
статьи, в которых уравнения орбитального движения имеют более простую 
и симметричную структуру в сравнении с уравнениями в KS-переменных. 
Дополнительными переменными в уравнениях орбитального движения яв-
ляются энергия движения спутника и время. Новая независимая переменная 
связана со временем дифференциальным соотношением, содержащим рас-
стояние от космического тела до центра масс Земли (использовано диффе-
ренциальное преобразование времени Зундмана). 

Предложены нормальные регулярные дифференциальные уравнения воз-
мущенного орбитального движения в кватернионных оскулирующих (медлен-
но изменяющихся) переменных, порождаемые осцилляторными регулярны-
ми дифференциальными кватернионными уравнениями возмущенного орби-
тального движения. 

Регулярные кватернионные уравнения возмущенного орбитального дви-
жения удобны для применения методов нелинейной механики и высокоточ-
ных численных расчетов, в частности, для прогноза и коррекции орбитально-
го движения космических аппаратов.
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В случае орбитального движения в гравитационном поле Земли, в описа-
нии которого учитываются центральная и зональные гармоники поля, приве-
дены первые интегралы осцилляторных регулярных кватернионных диффе-
ренциальных уравнений орбитального движения, имеющие восьмой порядок; 
рассмотрены замены переменных и преобразования этих уравнений, позво-
лившие получить для изучения орбитального движения замкнутые системы 
дифференциальных уравнений меньшей размерности (шестого порядка). 
Приведены первые интегралы этих уравнений, а также системы уравнений 
четвертого и третьего порядков, в том числе – система дифференциальных 
уравнений третьего порядка относительно расстояния от центра масс косми-
ческого тела до центра масс Земли и синуса геоцентрической широты и си-
стема двух интегро-дифференциальных уравнений первого порядка относи-
тельно этих двух переменных.
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REGULAR QUATERNION EQUATIONS ORBITAL MOTION  
IN THE EARTH’S GRAVITATIONAL FIELD IN KS-VARIABLES  

AND THEIR MODIFICATIONS. REDUCTION OF DIMENSIONALITY, 
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Abstract – Regular quaternion differential equations of the perturbed orbital 
motion of a cosmic body (in particular, a spacecraft, an asteroid) in the Earth’s 
gravitational field are considered, which take into account zonal, tesseral and 
sectorial harmonics of the field. These equations, unlike classical equations, are 
regular (do not contain special points such as singularity (division by zero)) for 
perturbed orbital motion in the central gravitational field of the Earth. In these 
equations, the main variables are four-dimensional Kustaanheim–Stiefel vari-
ables (KS-variables) or four-dimensional variables proposed by the author of 
the article, in which the equations of orbital motion have a simpler and sym-
metric structure compared to equations in KS-variables. Additional variables in 
the equations are orbital energy and time. The new independent variable is re-
lated to time by a differential relation containing the distance from the cosmic 
body to the Earth’s center of mass (the Sundman differential time transformation 
is used). Regular equations of perturbed orbital motion in quaternion osculating 
(slowly changing) variables are proposed. The equations are convenient for us-
ing methods of nonlinear mechanics and high-precision numerical calculations, 
in particular, for forecasting and correcting the orbital motion of spacecraft. 
In the case of orbital motion in the Earth’s gravitational field, the description of 
which takes into account the central and zonal harmonics of the field, the first 
integrals of the equations of orbital motion of the eighth order are given, changes 
of variables and transformations of these equations are considered, which made it 
possible to obtain closed systems of differential equations of the sixth order for the 
study of orbital motion, as well as systems of differential equations of the fourth 
and third orders, including a system of differential equations of the third order with 
respect to the distance from the cosmic body to the center of mass of the Earth and 
the sine of geocentric latitude, as well as a system of two integro-differential equa-
tions of the first order with respect to these two variables.

Keywords: regular quaternion differential equations of perturbed orbital motion, 
Earth’s gravitational field, singularity, Kustaanheim–Stiefel variables (KS-vari-
ables), modified four-dimensional variables, energy of orbital motion, Sundmann 
time transformation, quaternion osculating (slowly changing) variables, first inte-
grals of equations, distance to the Earth’s center of mass, latitude, longitude
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