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Решена задача оптимальной переориентации твердого тела (космиче-
ского аппарата) из исходного положения в заданное конечное угловое 
положение на основе кватернионов. Использован комбинированный 
критерий качества, объединяющий в заданной пропорции вклад управ-
ляющих сил и время, затраченные на совершение маневра, а также ин-
теграл энергии вращения. Синтез оптимального управления основан на 
дифференциальном уравнении, связывающем кватернион ориентации 
и кинетический момент космического аппарата. Аналитическое реше-
ние задачи оптимального управления получено, используя необходимые 
условия оптимальности в форме принципа максимума Л.С. Понтрягина. 
Подробно изучены свойства оптимального вращения. Для построения 
оптимальной программы вращения записаны формализованные уравне-
ния и расчетные формулы. Приведены аналитические уравнения и со-
отношения для нахождения оптимального управления. Даны ключевые 
соотношения, определяющие оптимальные значения параметров алго-
ритма управления разворотом. Также приводится конструктивная схема 
решения краевой задачи принципа максимума для произвольных усло-
вий разворота (начального и конечного положений и моментов инерции 
твердого тела). Проведенные численные эксперименты подтверждают 
сделанные аналитические выводы. В случае динамически симметрич-
ного твердого тела задача пространственной переориентации с мини-
мальным расходом энергетических затрат и времени полностью решена 
(в замкнутой форме). Даны пример и результаты математического моде-
лирования, подтверждающие практическую реализуемость разработан-
ного метода управления ориентацией.

Ключевые слова: управление переориентацией, комбинированный крите-
рий оптимальности, принцип максимума, управляющая функция, алго-
ритм управления, кватернион, краевая задача
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Введение. Подробно исследуется задача оптимальной переориентации 
твердого тела (в частности, космического аппарата (КА)) из исходного углово-
го положения в требуемое угловое положение. Основное отличие предложен-
ного решения – новый показатель качества, на основе которого формируется 
оптимальное управление.

Огромное число работ изучают проблемы управления угловым положе-
нием твердого тела в различных формулировках и использующих широкий 
диапазон методов решения [1–27]. Некоторые авторы проводят синтез опти-
мального управления, основываясь на аналитическом конструировании опти-
мальных регуляторов [1], другие строят программное движение на базе обрат-
ных задач динамики и получают гладкие управления для обеспечения свойств 
программной траектории полиному заданного порядка с коэффициентами, 
рассчитанными исходя из значений фазовых переменных в граничных точках 
траектории [2]. Особый интерес представляют вопросы оптимального управ-
ления [3–25]. Способы оптимизации самые разные. В задачах переориентации 
твердого тела многие авторы применяют принцип максимума Л.С. Понтряги-
на [8–25], в том числе с классическими критериями оптимальности (быстро-
действие [4–12], минимум энергозатрат [11, 13, 14], минимум расхода топлива 
[13] и др.). Кинематические задачи разворота исследованы детально [15–17]. 
Задачи оптимального управления в динамической постановке вызывают не-
поддельный интерес, однако здесь при решении краевой задачи разворота 
сталкиваются с определенными трудностями. В отдельных частных случаях 
двухточечная краевая задача решается методом разделения переменных [13]. 
Практически важными остаются аналитические решения задачи оптималь-
ного управления разворотом. Однако получить их для тел с произвольными 
моментами инерции крайне затруднительно. Известны несколько решений 
(аналитических в том числе) для вращений сферически-симметричных [12, 
18] и динамически симметричных тел [9–11, 19–22]. В опубликованной ранее 
работе [19], оптимальный вектор кинетического момента осесимметричного 
твердого тела вращается в связанной системе координат вокруг оси симмет-
рии твердого тела с постоянной угловой скоростью, но остается неизменным 
по модулю (вектор абсолютной угловой скорости твердого тела вращается в 
связанной системе координат вокруг оси симметрии с той же постоянной уг-
ловой скоростью, оставаясь неизменным по модулю); при этом используемый 
авторами минимизируемый функционал не включал силовые моменты.

Ниже решается задача оптимального разворота твердого тела (КА) с ис-
пользованием нового показателя качества, объединяющего в заданной про-
порции время и энергетические затраты – интеграл энергии вращения и вклад 
управляющих сил на совершение маневра (по энергозатратам). Фазовыми 
переменными служат кинетический момент твердого тела (КА) и кватернион 
ориентации. Приведенное ниже решение отличается от всех известных; во 
время оптимального разворота и управляющие функции, и фазовые перемен-
ные – гладкие функции времени. Рассмотренная задача отличается от других 
задач с комбинированным критерием оптимальности видом функционала 
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качества, который включает не только управляющие и фазовые переменные, 
но и длительность маневра [21–23]. Наличие интеграла энергии вращения в 
минимизируемом функционале приводит к ограничению кинетической энер-
гии во время разворота, а из-за наличия силовых моментов управляющие 
переменные оказываются ограниченными даже в отсутствии ограничений на 
управление. Фактор времени ограничивает длительность разворота.

1. Постановка задачи оптимального управления вращением КА. Вращатель-
ное движение твердого тела (КА) описывает следующее уравнение [12]: 

	 -+ × =1( )IL L L M  	  (1.1)
и кинематическое уравнение [12]

	 12 ( ),I -L = L L

 	 (1.2)
где L – кинетический момент КА; М – управляющий момент; I – тензор 
инерции КА; L – нормированный кватернион [12], задающий движение свя-
занного базиса относительно инерциального базиса (||L|| =  1), “  ” – знак 
умножения кватернионов [12, с.11–20]. Управление КА вокруг центра масс 
производится за счет изменения момента М. На практике интересны задачи, 
когда в начальный и конечный моменты времени кинетический момент L ра-
вен нулю. Выпишем граничные условия для управляемой системы (1.1)–(1.2):
	 ( ) ( ), ,L = =L0 0 0in L  	 (1.3)

	 ( ) ( ), ,L = L = 0fТ TL
 

  	 (1.4)
где Т – время завершения маневра. Кватернионы Λin и Λf  удовлетворяют усло-
вию ||Λin|| = ||Λf|| = 1. 

Предполагается, что вращательное движение КА регулируется с помощью 
системы ориентации, создающей вращающие моменты относительно трех 
главных центральных осей инерции. Оптимальным считаем управление, при 
котором достигается минимум следующей величины 

  ( / / / ) ( / / / ) ,= + + + + + +∫ ∫2 2 2 2 2 2
1 1 2 2 3 3 1 1 1 2 2 3 3

0 0

2

T T

G М J М J М J dt k L J L J dt kJ ТL 	 (1.5)

где k1 > 0 , k2 > 0 – постоянные положительные коэффициенты (k1 ≠ 0, k2 ≠ 0); 
Мi – проекции управляющего момента М на главные центральные оси эл-
липсоида инерции КА (эти оси образуют связанный базис); Li – проекции 
кинетического момента КА L на оси связанного базиса; Ji – главные цен-
тральные моменты инерции КА (i = 1,  3). 

Задачу оптимального управления сформулируем в следующей постановке: 
требуется перевести КА из состояния (1.3) в состояние (1.4) согласно уравне-
ниям (1.1), (1.2) так, чтобы сумма (1.5) была минимальной (время Т не фик-
сировано). Решение М (t) находится в классе кусочно-непрерывных функций 
времени. Учитывая, что кватернионы L и -L соответствуют одному и тому же 
угловому положению твердого тела (КА), далее рассматриваются только те 
задачи, в которых Λf ≠ ±Λin .
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Принятый критерий качества позволяет определить режим вращения КА, 
в котором космический корабль перейдет из своего начального положения Λin 
в заданное конечное угловое положение Λf с минимальными затратами управ-
ляющих ресурсов и энергии, и найти соответствующую программу управле-
ния. Сформулированная задача управления отличается от рассматриваемых 
ранее задач формой функционала (1.5), при котором даже в отсутствии огра-
ничений на управление управляющие переменные не могут быть неограни-
ченно большими. Есть и другая особенность. Так как на управляющий момент 
М не наложено никаких ограничений, требуемый маневр переориентации 
может быть исполнен при любых условиях разворота Λin и Λf и любых зна-
чениях J1, J2, J3, k1 и k2. Так как оптимизация основана на комбинации квад-
ратичного критерия качества и времени маневра T (в заданной пропорции, 
со своим коэффициентом пропорциональности), то существует оптимальное 
значение Topt, относительно которого сумма (1.5) возрастает как с увеличе-
нием, так и с уменьшением времени T. То, насколько крутым (или пологим) 
будет изменение модуля кинетического момента во время оптимального раз-
ворота, зависит от коэффициента k1. Значение коэффициента k2 определяет 
максимальный модуль управляющего момента, а отношение k2 / k1 определяет 
максимальную кинетическую энергию вращения КА в течение поворотного 
маневра. 

Необходимо отметить, что оптимизация вращений с минимальными за-
тратами (1.5) может оказаться полезной для КА с системой управления ори-
ентацией, основанной на электрореактивных двигателях (ЭРД), потому что 
когда управляют ЭРД (в частности, ионные двигатели), первый интеграл 
в показателе (1.5) пропорционален потребляемой электроэнергии (тяга ЭРД 
прямо-пропорциональна потребляемому электрическому току [28], и враща-
ющий момент пропорционален плечу установки ЭРД). Учитывая потребность 
во всемерном сокращении электропотребления ЭРД для управления движе-
нием КА, выбор минимизируемого функционала становится очевидным; вто-
рое слагаемое в (1.5) ограничивает кинетическую энергию вращения, делая 
ее как можно меньше, что также очень желательно (в практике космического 
полета).

2. Применение принципа максимума. Найдем решение поставленной задачи 
(1.1)–(1.5) на основе принципа максимума Л.С. Понтрягина [29]. Управляю-
щими функциями являются моменты Мi (i = 1,  3). Прежде всего, введем со-
пряженные переменные ϕi , которые соответствуют проекциям кинетического 
момента КА Li (i = 1,  3). В критерий качества (1.5) не входят элементы кватер-
ниона ориентации L, поэтому вместо сопряженных функций ψj , соответству-
ющих компонентам lj кватерниона L, используем следующие переменные ri 
(i = 1,  3, j = 0,  3):
	 ( ) / ,1 0 1 3 2 1 0 2 3 2r = l ψ + l ψ - l ψ - l ψ

	 ( ) / ,2 0 2 1 3 2 0 3 1 2r = l ψ + l ψ - l ψ - l ψ  

	 ( ) / .3 0 3 2 1 3 0 1 2 2r = l ψ + l ψ - l ψ - l ψ
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Аналогичный прием применяли многие исследователи [10–24], но с дру-
гими функционалами качества (чистые быстродействие, минимум энерго-
затрат и пр.); впервые указанную замену переменных сделали В.Н. Бранец, 
И.П. Шмыглевский и М.Б. Черток, Ю.В. Казначеев [11, 12]. Оптимальные 
функции ri и вектор r, образованный из ri, удовлетворяют уравнениям:
	 / / ,1 3 2 3 2 3 2r L r J L r J= -   / / ,2 1 3 1 3 1 3r L r J L r J= -  

	 / / ,3 2 1 2 1 2 1r L r J L r J= -   ( )1I -= ×r r L  	 (2.1)
(символ × означает векторное произведение векторов). 

Составим функцию Гамильтона–Понтрягина для оптимизационной зада-
чи (1.1)–(1.5):

	 /
( / / / )

( ( ) ) ( ( ) )
( ( ) ) / /

/ / /
/ ./  /

2 2 2 2 2 2
1 1 2 2 3 3 1 1 2 2 3 32 1

1 1 3 2 2 3 2 2 1 3 1 3

3 3 2 1 1 1 2 2 2 3 3 31 1 2

1 1 1 1

1 1

H k k

М J J L L М J J L L

М J J L

L J L J L J M J M J M J

L r J L r J L r JL

=- -

j + - j + -

+ + - - - +

+ +

+

+

+ j + - + +
    

  

  

   

 

Уравнения для ji получаются из формул [29]

	
∂

φ = -
∂i

i

H
L

  (i  = 1,  3).

Сопряженная система выглядит следующим образом:

	  / ( / / ) ( / / ) / ,1 1 1 1 3 2 3 1 2 3 1 2 1 12 1 1 1 1k L J L J J L J J r Jφ = + φ - + φ - -  

	 / ( / / ) ( / / ) / ,2 1 2 2 1 3 1 2 3 1 2 3 2 22 1 1 1 1k L J L J J L J J r Jφ = + φ - + φ - - 	 (2.2) 

	 / ( / / ) ( / / ) / .3 1 3 3 2 1 2 3 1 2 3 1 3 32 1 1 1 1k L J L J J L J J r Jφ = + φ - + φ - -

 

При составлении функции Гамильтона—Понтрягина ограничение ||L|| =  1 
не учитывалось в силу равенства ||L(0)|| = 1, о чем ранее было сказано. Вектор 
r неподвижен относительно инерциального базиса и | r | = const ≠ 0 (на посто-
янство величины | r | указывает последнее уравнение (2.1)). Конкретное ре-
шение r(t) системы (2.1) определяют начальное Lin и конечное Lf положения 
КА. Оптимальная функция r(t) вычисляется, используя кватернион L(t) [12]: 

	 = L L,Er c   

	 const (0) ,inE in r= = L Lc  

причем r(0) ≠ 0 (иначе r1 = r2 = r3 ≡ 0 и дальше не имеет смысла решать оп-
тимизационную задачу). Здесь L – сопряженный кватерниону L кватернион 
[12, с. 10–22].

Задача поиска оптимального управления сводится к решению системы 
дифференциальных уравнений (1.1), (1.2), (2.1), (2.2) с одновременной мак-
симизацией функции Н в каждый текущий момент времени t и удовлетворе-
нием условий (1.3), (1.4).
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2.1.  Структура оптимального управления. Найдем условия максимума 
функции Н, для чего перепишем ее в таком виде 

	 ,2 2 2
1 1 2 2 3 3 1 1 2 2 3 3 invH M M M M J M J M J H= φ + φ + φ - - - +

где Hinv не зависит явно от искомых функций Mi . Гамильтониан Н – квадра-
тичная функция моментов Mi , и необходимые условия экстремума ∂H/∂Mi = 0 
определяют ее максимум, которому соответствуют следующие значения: 
	 / .2i i iM J= j 	 (2.3)

Замкнутая система, состоящая из уравнений (1.1), (1.2), (2.1), (2.2), 
(2.3), позволит отыскать оптимальное управление. Введем обозначение 
r0 = | r (t)| = const ≠ 0 и перейдем к нормированному вектору р = r/| r |, у кото-
рого pi = ri /r0 . Для вектора р и его составляющих pi выполняются уравнения: 

	 ( ),1I -= ×p p L , / / ,1 3 2 3 2 3 2p L p J L p J= -  

	 = -2 1 3 1 3 1 3/ /p L p J L p J , = -3 2 1 2 1 2 1/ /p L p J L p J  	  (2.4)
Задача поиска оптимального программного движения КА заключается в 

решении системы уравнений углового движения (1.1), (1.2), сопряженной 
системы уравнений (2.2) и уравнений (2.4) вместе с равенствами ri = r0pi при 
наличии закона (2.3) для управляющих моментов Mi . Искомое оптимальное 
решение удовлетворяет следующим зависимостям:
	 ( ) / ,i i ia t p Jφ = 	 (2.5)

	 ( ) ,i iL b t p=   	 (2.6)
где a(t), b(t) – скалярные функции времени (b(t) ≥ 0 на всем отрезке времени 
t ∈ [0, T]).

Подставив последовательно (2.5) в (2.2) при наличии (2.6) и ri = r0 pi убеж
даемся в том, что найденное решение (2.5), (2.6) действительно справедли-
во для системы дифференциальных уравнений (1.1), (2.2)(2.4) (соотноше-
ния (2.6) прямо следуют из системы (1.1), (2.3), (2.4) при связях (2.5)). По-
сле обозначения j – вектор, элементами которого являются переменные ji , 

= 1 2 3diag( , , )I J J J  – тензор инерции твердого тела, перепишем систему (2.2) 
в векторном виде:

	 ( ) ( ) .1 1 1 1
12k I I I I- - - -= + × + × -L L L r   	 (2.7)

Из (2.2), (2.4), (2.5) видим, что искомые функции a(t), b(t) связаны 
соотношением 
	 ) .( 1 02k b ra t = -    	 (2.8)

Опираясь на уравнения (2.4), (2.5), (2.6), левая часть уравнения (2.7) будет 
следующей:

	 ( ) ( ( )) ( ( )) .1 1 1 1 1 1 1I a a aI I aI abI I aI- - - - - - -= + = × + = × +p p p L p p p p    

Найдем теперь правую часть уравнения (2.7), имея ввиду (2.5), (2.6).
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	 ( ( )) ( ) ( ) .1 1 1 1 1 1
1 02k I b abI I ab I I r I- - - - - -+ × + × -p p p p p p

Правая и левая части (2.7) тождественно равны, только если для a(t) и b(t) 
удовлетворяется (2.8).

Из уравнений (2.3)–(2.6) ясно видно, что при оптимальном вращении 
управляющий момент М действует вдоль прямой, неподвижной в инер-
циальной системе координат. Поэтому при нулевых граничных условиях 
L(0) = L(T) = 0 решение системы (1.1), (2.2)–(2.4) описывает движение, при 
котором кинетический момент КА L имеет постоянное направление в инер-
циальной системе координат, причем это решение единственное. Кинетиче-
ский момент L(t) (как решение системы уравнений (1.1), (2.2)–(2.4) с уче-
том равенств ri = r0 pi ) удовлетворяет соотношениям (2.6); подстановка (2.6) 
в уравнение движения (1.1) подтверждает, что необходимое условие опти-
мальности в форме уравнений (2.4) выполняется при наличии (2.3), (2.5). 

Необходимо отметить, что общий подход к поиску решения оптимизаци-
онной задачи в классе траекторий, на которых кинетический момент КА име-
ет постоянное направление, и соотношения типа (2.5), (2.6) впервые были 
описаны в работе [11]. Позднее этот подход был успешно применен и развит 
Н.А. Стрелковой при решении аналогичных задач [14].

2.2. Свойства оптимального вращения. Найдем связь между оптимальными 
функциями a(t) и b(t). Нетрудно показать, что для оптимальной функции b (t) 
из совместного анализа уравнений (1.1), (2.3)–(2.6) следует равенство /2b a=  
или

	 ( ) ( ) .
0

1
2

t

b t a t dt= ∫
Учитывая последнее равенство и условие (2.8), получим уравнение ä = k1a 

для a (t), которое имеет аналитическое решение: 

	 ( ) exp( ) exp( ),1 1 2 1a t C t k C t k= - + 	 (2.9)
где C1 , C2 – некоторые постоянные (они зависят от времени разворота и будут 
определены ниже).

Поскольку L(0) = 0 и L(T) = 0, то b(0) = b(T) = 0 и ( ) ( ) ,00a a T r= = -   откуда 
r0 = ( )1 1 2k C C- . Соответственно функция b(t) для оптимального вращения 
принимает вид:

   ( ( ) ) ( ) [ exp( )( ) / exp( ) ] ( ).0 1 2 1 1 1 1 2 122b a t C t k C t k C Ct k kr - - + -= + =    	 (2.10)
Время окончания процесса разворота T не фиксировано, и гамильтони-

ан H не зависит в явном виде от времени. Поэтому в каждый момент вре-
мени t ∈ [0, T] оптимальное управление должно удовлетворять равенству 
H = const = 0 [30]. На концах оптимальной траектории (в начальный и конеч-
ный моменты времени) L(0) = 0 и L(T) = 0, и функция H такова (с учетом (2.3))

	 H(0) = H(T) = −k2 −  ( ) /2 2 2
1 1 2 2 3 3 4J J Jφ + φ + φ  + ( ) /2 2 2

1 1 2 2 3 3 2J J Jφ + φ + φ  = 

	 =  ( ) /2 2 2
1 1 2 2 3 3 4J J Jφ + φ + φ  – k2
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	 или H(0) = H(T) =
2 2 2

1 1 2 2 3 3M J M J M J+ +  – k2 = 0, 

	 откуда a2(0) = a2(T) = 4k2/( 2 2 2
1 1 2 2 3 3p J p J p J+ + ).

Легко показать, что условие 2 2 2
1 1 2 2 3 3 constp J p J p J+ + =  выполняется 

для движений, соответствующих уравнениям (2.4), (2.6). Для этого продиф-
ференцируем по времени левую часть приведенного равенства и убедимся, 
что полученная производная равна нулю после подстановки  .pi в соответствии 
с уравнениями (2.4), а затем Li по выражениям (2.6). Отсюда следует одно из 
ключевых свойств оптимального движения КА: соотношение между квадра-
том модуля кинетического момента КА и кинетической энергией вращения 
Е есть величина постоянная на протяжении всего разворота (внутри всего от-
резка времени [0, T]). Действительно

Е = b2 ( 2 2 2
1 1 2 2 3 3p J p J p J+ + )/2, и Е/| L | 2 = (

2 2 2
10 1 20 2 30 3p J p J p J+ + )/2 = const 

(зависимость b2 = | L |2 следует непосредственно из формул (2.6)); рi 0 = рi(0).
Для оптимальной функции a(t) необходимо удовлетворить следующие 

требования:

	 ( ) ;20 2a k C=  ( ) ,22a T k C= -  

	 a(T/2) = 0 ( ),2 2 2
10 1 20 2 30 3С p J p J p J= + +  и a(0) = a(T) = –r0.

Последнее равенство следует из зависимости (2.8), если учесть 
b(0) = b(T) = 0 в силу наличия условий L(0) = 0 и L(T) = 0 для оптимального 
разворота. Свойство a(T) = −a(0) вытекает из необходимого условия опти-
мальности H(0) = H(T) = 0 (с учетом зависимостей (2.3), (2.5)). Исходя из ре-
шения (2.9), находим

	 ( ) ( exp( ) exp( )).1 2 1 1 1a t k C t k C t k= - -

На концах интервала управления  .a(t) = k1
1/2(C2 – C1), .a(T ) = k1

1/2(C2 exp(Tk1
1/2) – 

– C1 exp(–Tk1
1/2)). Приравняв  .a(0) и  .a(T), получим уравнение C2 (exp(Tk1

1/2) – 1) = 
= C1 exp(–Tk1

1/2) – 1), из которого связь между C1 и C2 запишем в явном виде  
C1 = –C2 exp(Tk1

1/2). Из (2.10) будет b(0) = 0, b(T) = 0. Далее убеждаемся, что 
a(T) = −a(0) и a(T/2) = 0, так как на основании (2.9) имеем a(0) = C1 + C2, 
a(T) = C1 exp(–Tk1

1/2) + C2 exp(Tk1
1/2) =  -C2  -  C1  , a(T/2) = C2 exp(Tk1

1/2/2) – 
– exp(Tk1

1/2/2)exp(–Tk1
1/2/2) = 0. Но r0 = k1

1/2(C1 – C2) = C1 k1
1/2(C1 exp(–Tk1

1/2) + 
+ 1) > 0, отсюда C1 > 0 , C2 < 0 (при этом |C1|>|C2|).

В итоге анализ структуры функции a(t) показал, что в любой момент 
времени t ∈ [0,  T] производная  .a < 0, причем на левом и на правом кон-
цах траектории она минимальна:  .a(0) =   .a(T ) = –r0. Заметим, что поскольку  .a(0) < 0,  .a(T ) < 0 , то C1 > 0 , а C2 < 0 , и поэтому a(0) > 0, а a(T) < 0. Кро-
ме того, на участке t < T/2 будет a > 0 и  ä  > 0, а  .a < 0; на интервале t > T/2 
будет a < 0 и ä  < 0 , но  .a < 0. В момент t = T/2 производная  .a максимальна 
(так как a(T/2) = 0 и b имеет максимальное значение). В то же время .a(T/2) =  
= 2C1k1

1/2 exp(–Tk1
1/2/2) < 0. Значит, на всем отрезке времени t ∈ [0, T] имеем  
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.a < 0. Не существует ни одного момента времени t, чтобы  .a(t) = 0. Конкретные 
значения констант C1, C2 зависят от коэффициентов k1, k2 и интеграла

	
0

( ) ,
T

Q t dt= ∫ L 	 (2.11)

значение которого не зависит от характера изменения функции b(t) для вра-
щений, удовлетворяющих уравнениям (2.4), (2.6), и определяется исключи-
тельно кватернионами Λin, Λf и моментами инерции КА J1, J2, J3 [17] (величи-
на Q рассчитывается одновременно с вектором р0). Максимальный кинети-
ческий момент и максимальная энергия вращения достигаются при t = T/2; 
Lmax = | L(T/2) |, Emax = Ek(T/2).

В гипотетическом (предельном) случае, если k1 = 0, a(t) – линейная функ-
ция времени: 
	 ( ) ( / )22 1 2a t k t T С= -

(модуль кинетического момента КА – квадратичная функция времени, со-
ответственно), и длительность разворота составляет T = (6S/k2

1/2)1/2, где S – 
функционал пути [17]:

	 / / / ,2 2 2
1 1 2 2 3 3

0

T

S L J L J L J dt= + +∫  S = QC.

Следовательно, Emax = 3Sk2
1/2/16, и Lmax = [3Qk2

1/2/(8C)]1/2.
При неизменном значении k2 с увеличением коэффициента k1 макси-

мальная энергия вращения Emax уменьшается. Это связано с тем, что соглас-
но связи (2.8), выявленной для оптимальных функций a(t) и b(t), с увеличе-
нием значения k1 (при фиксированном k2) уменьшается максимальный мо-
дуль кинетического момента Lmax и bmax = b(T/2). При этом время разворота 
T увеличивается. Продлевается и участок, на котором a(t) и  .a близки к нулю. 
Чем больше k1, тем сильнее функция b(t) отдаляется от параболического из-
менения. Рис. 1 наглядно показывает характер поведения оптимальных функ-
ций b(t) и а(t) в зависимости от значения коэффициента k1 минимизируемого 
функционала (1.5) (здесь k1

(2) > k1
(1) > 0 , k1

(3) >> k1
(2)); пунктирная линия соот-

ветствует случаю k1 → 0.
Здесь необходимо дать некоторые пояснения. В силу уравнения ä = k1a, для 

большего k1, при одинаковом a производная ä больше (крутизна функции a(t) 
возрастает). Значения a(0) и a(T) фиксированы (они не меняются с измене-
нием k1), a(0) = 2k2

1/2/C, a(T ) = –2k2
1/2/C и a(T/2) = 0. Чем больше k1, тем бы-

стрее функция a(t) приближается к нулю, начавшись из точки a(0) = 2k2
1/2/C. 

Соответственно, функция b(t) быстрее переходит на участок с  
.
b ≈ 0. С умень-

шением bmax, время завершения маневра переориентации неизбежно увели-
чивается, поскольку величина (2.11) остается неизменной (она не зависит от 
коэффициентов k1, k2). Таким образом, с ростом k1 функция b(t) все больше 
отдаляется от квадратичной функции и приближается к кусочно-линейной 
зависимости, которая может аппроксимироваться функцией, состоящей из 
участков с  

.
b ≈ k2

1/2/C, далее b ≈ const и затем  
.
b ≈ –k2

1/2/C. При неограниченном 
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увеличении k1 и k2 максимальная энергия вращения Emax стремится к уровню 
E0 = k2 / (2k1).

В оптимальном решении (когда k1 ≠ 0) постоянные C1, C2 и время T вы-
числим из уравнений:

	 (exp( ) ) ( / / )(exp( ) ),1 1 2 1 11 2 1T k T QC k k k T k+ = + - 	 (2.12)

 	 ( ( exp( ))) ,1 2 12 1C k C T k= - -   .2 2 12C k C C= -

Причем с увеличением k2 длительность разворота T уменьшается (при 
неизменном значении k1).

3. Доказательство единственности оптимального решения. Покажем, что 
найденное решение (2.5), (2.6) – единственное решение системы уравне-
ний (1.1), (2.2)–(2.4). Пусть q – орт, параллельный моменту М, причем в на-
чальный момент времени t = 0 направления векторов М и q совпадают, т.е. 
q(0) · М(0) > 0 (знак умножения “ · ” означает скалярное произведение век-
торов). Тогда j = I–1f q , где f – скалярная функция c начальным значением 
f (0) > 0 (| q | = 1). В окрестности точки t = 0 справедливы соотношения М || L и 
L = cq, где c – скалярная величина. Подставим в уравнения (1.1) формулы 
(2.3) с учетом зависимости j = I–1f (t) q при наличии равенств Ji ωi = cqi. По-
лучим соотношение:

	 ( ) ( ) / .1 2 2I f t-c + c + × c =q q q q q
 	 (3.1)

Векторы ( )1 2I -c + × cq q q  и q ортогональны, либо сумма ( )1 2I -c + × cq q q  
есть нулевой вектор (| q | = 1, а значит в любом случае q ·  .q = 0). Уравнение (3.1) 
удовлетворяется, если только ( )1I -= - ×q L q  и ( ) / .2f tc =  Подставим теперь 
векторы j = I–1f (t) q и L = χq в (2.7) и вычислим левую часть уравнения (2.7).

	 – – –( ) ( ( ) )– .1 1 1I f f fI f I+ = c ×q q q q q 

        

После вычисления правой части уравнения (2.7) получим

	

– – – – – –

– – – –

( ( )) ( –) ( )

( .) )– ( –

1 1 1 1 1 1
1

1 1 1 1
1 0

2  

2

k I I I f I f I I

k I f I I r I

c + c × + × c =

= c c ×

q q q q q r

q q q p

   

 
 

      

    

Приравняв левую и правую части уравнения (2.7), получаем уравнение для 
вектора q: 
	 = c -1 02f k rq q p

    

из чего следуют соотношения  
.
f  = 2k1c – r0 и q ≡ р (так как f (0) > 0, f (T) < 0,  

и   
.
f  < 0). Пришли к однозначному выводу: если в какой-либо момент време-

ни t векторы I j и L коллинеарны, то они остаются коллинеарными внутри 
всего интервала времени 0 < t < T. Требования L(0) = 0 и L(T) = 0 гарантируют 
существование как минимум двух таких моментов, когда L и I j коллинеарны 
(L = htI j при t → 0, и L = –h (Т – t)I j при t → T ), где h –скалярная величи-
на. Можем утверждать, что в процессе оптимального разворота закономер-
ность L || р сохраняется внутри всего отрезка времени t ∈ [0, T], и оптимальное 
решение обязательно соответствует законам (2.5), (2.6). Таким образом мы 
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доказали, что (2.5), (2.6) – единственное решение системы (1.1), (2.2), (2.3), 
(2.4), поскольку L(0) = 0 и L(T ) = 0 (напомним, ri = r0 pi ).

Имея в виду выражения (2.3), (2.5), (2.6) и оптимальные значения посто-
янных C1 и C2 для функций a(t), b(t), оптимальное управление и оптимальное 
движение определяют следующие зависимости:

	 [exp( ) exp(( ) )] / ,1 1 1 2i iC t k t T kM p- -= - 	 (3.2)

	 1 1 1 1 1[1 exp( ) exp( ) exp(( ) )] (2 ),ii C T k t kL t T k p k+ - - - - -= 	 (3.3)

где pi – составляющие вектора p, который удовлетворяет уравнениям (2.4),  
,0in in= L L L Lp p 

     / ( ( exp ( ))).1 2 12 1C k C T k= - -  Время T рассчиты-
вается из уравнения (2.12).

Решение (3.2), (3.3) системы уравнений (1.1), (2.2)–(2.4) – единственное. 
Краевая задача принципа максимума состоит в определении вектора р0 = p(0) 
и величины r0 > 0, при которых решение системы уравнений (1.1), (1.2), (2.2), 
(2.3), (2.4) с начальными условиями (1.3) и связью ri = r0 pi удовлетворит крае
вым условиям (1.4).

4. Основы проектирования оптимальной программы управления вращением. 
Решение задачи оптимального разворота описывается уравнениями (2.5), 
(2.6), (3.2), (3.3); управляющие функции Мi  и компоненты кинетического 
момента Li изменяются согласно (3.2), (3.3). Вектор р0 и интеграл Q, характе-
ризующий “трудоемкость” разворота, находятся после решения двухточечной 
краевой задачи разворота. Программу вращения КА полностью определяют 
Q, m0. Программное значение М связано с кватернионом L по выражению

	  ( ) 0 /2,inina t= L L L LM p   

в котором a(t) изменяется по закону (2.9).
Для оптимального управления характерно свойство симметрии (преж-

де всего для функций a(t) и b(t)), которое выражается в следующих 
закономерностях:
	 ( ) ( ) ,0 0a a T= - >   ( ) ,0b t ≥   ( ) ( ),a T t a t- = -   ( )– ( ),b T t b t= 

	
/

/

( ) ( ) ,
2

0 2

T T

Т

a t dt a t dt=∫ ∫  
/

/

( ) ( ) ,
2

0 2

T T

Т

b t dt b t dt=∫ ∫

	 ( ) ( ) ,T t tL - L = -L LM M 

      ( ) ( ) ,T t tL - L = L LL L 

   

	 max ( ) ,2
0 t T

t k C
≤ ≤

=M ,   max ( / ) .2 2 2
1 2 3

0
max 2

t T
L L L TL

< <
= + + = L

	 Lmax = ( / ) / ( )2 2
0 0 1 2 14 2r r k k C k+ -  или 

	 Lmax =  ( ) / / ( ) / ) / .2 2
1 2 2 1 2 14 2С С k C C C k- - + -
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Из (2.6) следует, что р – орт кинетического момента L. Оптимальные 
функции Li(t ), ϕi (t ), рi (t)  взаимосвязаны посредством выражений (2.5), (2.6), 
в которых рi(t) подчиняется системе (2.4). Оптимальное управление опреде-
ляется (3.2), векторы М и L коллинеарны в любое время t ∈ [0, T]. В момент 
t = T/2 управляющий момент М сменяет направление на противоположное 
(величина | L | принимает максимальное значение | L (T/2)| = Lmax ).

4.1. Особые случаи построения оптимального управления разворотом. Управ-
ляющие функции формируются согласно (3.2), для чего надо в каждый мо-
мент времени t знать р1, р2, р3 (их изменение описывает система (2.4), (3.3)). 
Аналитическое решение системы (1.2), (2.4), (3.3) существует только для ди-
намически симметричных и сферически-симметричных тел. 

 В случае сферически-симметричного КА (J1 = J2 = J3) зависимости (3.2), 
(3.3) имеют явный вид:

	 / ,)( 2 2 2
0 1 2 3consti i iр t р = n n + n= + n=  

	 ( [exp( ) exp(( ) )]) / ,1 1 1 0 2i iC t k t T kМ t р- -= -   

	 ( ) [ exp( ) exp( ) exp(( ) )] ( ),1 1 1 1 0 11 2i iL t C T k t k t T k p k= + - - - - -  i = 1,  3, 
где n0, n1, n2, n3 – элементы кватерниона разворота ,t in fL = L L

  Q  = 
= 2 J1 arccos  ν0.

Во время оптимальной переориентации сферически-симметричный КА 
разворачивается вокруг оси Эйлера, и оптимальная траектория L(t ) имеет 
следующий аналитический вид:

	 ( ) / ( )( ) ,0 12s t J
int еL = L p
   ( ) ( ) .

0

t

s t b t dt= ∫
При динамической симметрии твердого тела (J2 = J3 ) задача оптимального 

управления (1.1)–(1.5) может быть доведена до аналитического решения (для 
конкретности дальнейшего изложения осью симметрии считается ось ОХ). 
При таком распределении масс оптимальное движение есть одновременный 
поворот тела (КА) вокруг направления, задаваемого вектором р, неподвиж-
ным относительно инерциальной системы координат, и вокруг оси ОХ, об-
разующей с р постоянный угол J. Угловые скорости относительно р и оси 
ОХ изменяются пропорционально с постоянным коэффициентом пропорцио
нальности, в силу чего запишем [8, 11]:

	 o 1/2 /2,f in е eb aL = L p e
 

где е1 – орт оси симметрии КА; a, b – углы поворота твердого тела вокруг оси 
ОХ и вокруг р (| α | ≤ p, 0 ≤ b ≤ p). Решение p(t) представляется в аналитической 
форме [8, 11]:

	

cos sin , sin c, os ,

( ) ,

2 20 30 3 20 30

1

1 0

0

1

1

cos
t

p p p p p p

J J
t dt

J

р р = κ + κ = - κ + κ

-
κ = w

= = J

∫ 	 (4.1)
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где pi 0 = рi(0); J = J2 = J3; продольная скорость w1(t) = L1(t)/J1 определяется из 
(3.3) при том, что р1 = const = р10 . Значения a, b и pi0 рассчитываются по ква-
тернионам Λin и Λf из системы [8, 11]:

	 ,1
10

1

J J
p

J
-

a = b   cos cos sin sin ,10 02 2 2 2
p

b a b a
- = n  

	 cos sin sin cos ,10 12 2 2 2
p

b a b a
+ = n 	 (4.2)

	 sin cos sin sin ,20 30 22 2 2 2
p p

b a b a
+ = n , sin cos sin cos ,20 30 32 2 2 2

р p
b a b a

- + = n

причем −p ≤ a ≤ p, 0 ≤ b ≤ p (здесь n0, n1, n2, n3 – элементы кватерниона 
).t in fL = L L



В случае осевой симметрии КА описанное решение отличается от [11], так 
как все управляющие переменные Мi (t) – гладкие функции времени. Компо-
ненты кинетического момента Li  рассчитываются по уравнениям (3.3) и (4.1). 
Оптимальные функции a(t) и b(t) определены программами (2.9), (2.10) и за-
висят от параметров T, С, Q, которые рассчитываются однозначно по задан-
ным Λin, Λf, u0, k1, k2 и J1, J2, J3 . Искомые оптимальные управления Mi (t) име-
ют аналитический вид:

	 [exp( ) exp(( ) )] / ,1 1 1 1 10 2C t k tM T k p- -= -  

	 [exp( ) exp(( ) )] sin( ) / ,2
1 1 12 1 01 2C t k t T k pM - - - - κ + g= 

	 [exp( ) exp(( ) )] cos( ) / ,2
1 1 13 1 01 2C t k t T k pM - - - - κ + g= 

а программные значения Li   составляющих кинетического момента L 
следующие:

	 [ exp( ) exp( ) exp(( ) )] ( ),1 1 1 1 1 10 11 2L C T k t k t T k p k= + - - - - -  

	 [ exp( ) exp( ) exp(( ) )] sin( ) ( ),2
2 1 1 1 1 10 11 1 2L C T k t k t T k p k= + - - - - - - κ + g

	 [ exp( ) exp( ) exp(( ) )] cos( ) ( ),2
3 1 1 1 1 10 11 1 2L C T k t k t T k p J k= + - - - - - - κ + g

где g = arcsin(p20/(1 – p1
2
0)1/2), если р30 ≥ 0 , или g = p – arcsin(p20/(1 – p1

2
0)1/2), если 

p30 < 0 (|p10| ≠ 1); вариант | р10| = 1 соответствует плоскому повороту вокруг оси 
ОХ, поэтому он не рассматривается.

Оптимальную траекторию L(t ) запишем в следующем аналитическом виде:

	 / /( ) ,0 12 2
int е eσ µL = L p e
 

где 

	

[(exp( ) ) /( ) (exp( ) exp( )

exp(( ) ) ) / ( ) ] ;
1 1 1 1 1

1 1 2

1 2

1 2

C T k t k t k T k

t T k k J

σ = - + + - + - -

- - -

	 µ = σ -10 2 1 1( ) /p J J J .
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Параметры р0 , Q , Т в случае динамически симметричного тела находятся 
намного проще (также упрощается определение величины (2.11)); Q = J2b, так 
как | L | = J2 

.
b, где  

.
b – скорость вращения вокруг L (напомним, b ≥ 0 , 

.
b ≥ 0 ). Ве-

личины Lmax, G зависят от b. Чтобы (1.5) было минимальным необходимо ми-
нимизировать угол b, что возможно, если b ≤ p  (именно поэтому (4.2) включает 
условие 0 ≤ b ≤ p ). Отметим, что в более ранних работах [11, 14] также выписаны 
предварительные выражения общего решения задачи оптимального разворо-
та, но для других функционалов качества, и доведено до конца решение для 
частного случая динамической симметрии твердого тела. Причем авторы статьи 
[11] показали, что система (4.2) имеет решение для любых Λt и J1, J2 = J3.
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Рис. 1. Вид оптимальных функций a(t) и b(t).
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В случае произвольного распределения масс (J1 ≠ J2 ≠ J3) решение систе-
мы (1.2), (2.4), (3.3) можно найти только численными методами (в частности, 
методом последовательных приближений [31], или способом, описанным в 
предыдущем исследовании [8]). Искомый вектор p0 получается из решения 
краевой задачи р(0) = р0 , р(Т ) = ~Lt    р0    Lt для системы (2.4), (2.6). Ранее при-
меняли метод итераций (см. систему [32] и способ [33]). Используя известное 
свойство независимости оптимального вектора р0 от поведения b(t) [17], мы 
рассчитываем р0 при допущении b(t) = const, что существенно облегчает расчет 
р0. Решение р(t), L(t) системы уравнений (2.4), (2.6) при условии b(t) = const 
отражает вращение по инерции, поскольку уравнения (2.4), (2.6) выполняют-
ся совместно с (1.1), из которых следует M = 0.

Необходимо заметить, что при любых исходных условиях разворота (лю-
бых значениях Λin , Λf , J1  , J2 , J3 , k1 , k2) кинетическая энергия вращения 
E(t) ≤ k2 / (2k1). Т.е. в момент времени t = T/2 энергия вращения E(T/2) не мо-
жет быть больше уровня k2 / (2k1). При импульсном управлении (когда k2 → ∞) 
на большей части разворота КА вращается практически по инерции с энерги-
ей E ≈ k2 /(2k1) (управляющий момент M пренебрежимо мал |M| ≈ 0).

С увеличением коэффициента k1 максимальная энергия вращения Emax 
и максимальный кинетический момент Lmax уменьшаются. Если k1 → 0, то 
функция a(t) изменяется практически по линейному закону, а b(t) близка к 
квадратичной функции времени, максимальный кинетический момент Lmax 
достигает максимально возможного уровня Lmax = (3Q(k2

1/2)/(8C))1/2, Emax = 
=3CQk2

1/2/16.
5. Пример решения задачи оптимального управления и математического мо-

делирования. Для примера рассмотрим разворот КА на 180° в положение, со-
ответствующее кватерниону Λf с элементами l0 = 0; l1 = 0.7071068; l2 = 0.5; 
l3 = 0.5. В исходном положении направления одноименных осей связанного 
и инерциального базисов совпадают, и L(0) = L(Т) = 0. Определим оптималь-
ную программу управления для перевода КА из состояния (1.3) в состояние 
(1.4) при условии, что кинетическая энергия вращения не превышает 10 Дж. 
Численное решение задачи управляемого разворота в постановке (1.1)–(1.5) 
приведем для случая, когда k1 = 0.002 с 2  и k2 = 0.04 Вт/с , а инерционные ха-
рактеристики КА приняты следующими: J1 = 63559 кг · м2, J2 = 192218.5 кг · м2, 
J3 = 176809 кг · м2. 

При решении двухточечной краевой задачи разворота в (2.6) полагаем 
b(t) = const и | L | = const), так как характер поведения функции b(t) не влияет 
на расчетное значение p0 [17]. Начинаем с решения той же задачи для динами-
чески симметричного тела с моментами инерции J1 и J, где J – момент инер-
ции относительно поперечной оси, равный среднему между J2 и J3 значению 
(исследователи нередко используют принцип осреднения [34]). Допустима 
величина J = (J2 + J3)/2, хотя лучше взять такое значение [8, 24, 25]:

	 ( )( / )( / ) .2 3
1 2 1 3

2 3 1
1 1 1

J J
J J J J J

J J J
= - - +

+ -

Теперь решаем систему (4.2) в предположении, что КА – динамиче-
ски симметричное тело. Вычисленные из (4.2) значения p0 и β берем как 
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начальное приближение к истинным значениям, соответствующим опти-
мальному решению. Они уточняются до тех пор, пока не станут удовлетво-
рять системе (1.2), (2.4), (2.6) с учетом b(t) = const (что соответствует M = 0) 
при условиях Λ(0) = Lin, Λ(tpr) = Lf, накладываемых на вращение КА. Имея p0 
и угол b, компоненты начального кинетического момента Lst вычисляем по 
выражениям:

	  
b

=1st 10
J

L p
T

 , 
b

=2st 20
J

L p
T

 , 
b

=3st 30
J

L p
T

 	 (5.1)

(при расчете р0 считалось Т  =  300  с). Прогноз неуправляемого движения 
осуществляем путем интегрирования системы уравнений (1.2), (2.4), (2.6) 
и b(t) = Jb/T с начальными условиями Λ(0) = Lin, L(0) = Lst, р(0) = р0 . Мерой 
близости р0 к истинному решению служит величина e = sqal ( pr fL L


), где 

Λpr – максимально близкое к Λf положение, полученное в ходе моделирова-
ния углового движения КА, соответствующего вращению по инерции (Mi = 0). 
Значение р0 уточняется до тех пор, пока e < εth (εth – пороговая величина чуть 
меньше единицы, которая задает точность рассчитанного решения). Как толь-
ко условие e ≥ εth будет достигнуто (прогнозируемая ошибка удовлетворяет 
требуемой точности), вектор p0 и угол b считаются найденными (для удовле-
творения краевым условиям L(0) = Λin, Λ(tpr) = Lf), а краевая задача решенной. 
Вектор p0 уточнялся, используя рекуррентное правило: 
	 ,( 1) ( )n n

t t f pr
+L = L L L

 

где Λt
(n) – кватернион разворота для расчета p0 и Lst в на n-м приближении. 

Правые части системы (4.2) (элементы кватерниона разворота Λt
(n)) обнов-

ляются на каждом n-м шаге итераций, из (4.2) мы находим p0, b, а также ки-
нетический момент Lst (согласно (5.1)) для интегрирования уравнений (1.2), 
(2.4), (2.6), и вычисляем прогноз Λpr. Если e < εth, то рассчитывается новый 
кватернион разворота Λt

(n + 1) для следующего (n + 1)-го приближения – про-
цесс уточнения p0 возобновляется. В правых частях системы (4.2) для началь-
ного приближения берутся элементы кватерниона .(0)

t in fL = L L

  Итерацион-
ный процесс останавливается, если e ≥ εth .

Приведенная схема итераций аналогична методу решения уравнения вида 
x = g(x) для скалярной функции g(x) скалярного аргумента x . В нашей схе-
ме аргумент – кватернион Λt  , а функция – кватернионное произведение 

t f prL L L

 
 (Λf – постоянный кватернион, а Λpr зависит от аргумента Λt че-

рез систему (4.2), (5.1) и модель вращения, описываемую уравнениями (1.2), 
(2.4), (2.6) и b(t) = const = Jb/Т). С изменением Λt каждый раз получается но-
вый вектор p0 (как решение системы (4.2) с обновленными правыми частями), 
и свои начальные условия List и прогнозируемое положение Λpr, что приводит 
к изменению функции t f prL L L

 
. Как только sqal ( pr fL L


) ≥ εth, век-

тор p0 найден, и необходимость расчета последующих приближений отпадает. 
Поскольку |vect ( ( )n

f prL L


)| < |vect ( )n

tL | для всех n, то можно утверждать, что 
процесс приближений к искомому значению p0 сходится. Похожий способ 
расчета р0 применялся в решении двухточечной краевой задачи разворота для 
максимального быстродействия [8].
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Наглядная демонстрация движения КА во время оптимального разво-
рота приведена на рис. 2–5 (по результатам математического моделирова-
ния). Из решения краевой задачи разворота из положения Λ(0) = Lin в по-
ложение Λ(Т) = Lf мы получили p0 = {0.49535062; –0.11725655 ; 0.86074309 } и 
Q = 355.4 кН · м · с2. Максимальный управляющий момент |M(0)| = 70.2 Н · м. 
Значение константы r0 = 6.2768 Вт. Кинетический момент достигает макси-
мальной величины Lmax = 1561.9 Н · м · с в момент времени t = 135.6 с. Энергия 
вращения во время разворота не превышает Emax = 9.907 Дж. На рис.2 даны 
графики изменения проекций кинетического момента на оси связанной 
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Рис. 2. Изменение проекций кинетического момента КА во время разворота.

Рис. 3. Изменение компонент кватерниона ориентации L(t) во время разворота.
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системы координат L1(t), L2(t), L3(t) во времени (проекции Li даны в Н · м · с). 
Рис.3 иллюстрирует изменение элементов кватерниона L(t) в процессе совер-
шаемого маневра (λ0(t), l1(t), l2(t), l3(t) отражают текущую ориентацию КА). 
Характер поведения составляющих р1(t), р2(t), р3(t) показан на рис. 4 (значе-
ния рi, как и λj, – безразмерные величины), причем проекция р1 изменяется 
незначительно. Изменение модуля кинетического момента КА иллюстрирует 
рис. 5. Свидетельством того, что ОХ – продольная ось КА, является то обсто-
ятельство, что L1 знакопостоянна, и характер ее изменения повторяет поведе-
ние модуля кинетического момента (в отличие от L2 и L3). Для оптимального 
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Рис. 4. Вид функций p1(t), p2(t), p3(t) во время оптимального разворота.

Рис. 5. Изменение модуля кинетического момента при оптимальном управлении.
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управления переменные рi и lj – гладкие функции времени; Li – гладкие 
функции времени (за исключением t = 0 и t = Т).

Ранее было установлено, что для оптимального управления |M(0)| = k2
1/2/C, 

|M(t)| ≤ |M(0)| и E(t) ≤ k2 / (2k1) ; с ростом k1 и k2 максимальная энергия враще-
ния приближается к уровню E0 = k2 /(2k1). В табл. 1 даны результаты числен-
ных экспериментов для разных сочетаний коэффициентов k1 и k2 оптимально-
го разворота КА с моментами инерции J1 = 63 559 кг · м2, J2 = 192 218.5 кг · м2, 
J3 = 176 809 кг · м2 (при этом (2.11) полагалась равной Q = 355.4 кН · м · с2 ).

Таким образом, данные математического моделирования подтверждают, 
что при любых k1 и k2 кинетическая энергия вращения E(t) ≤ k2 /(2k1). На-
личие силовых моментов в минимизируемом функционале (1.5) приводит: 
во-первых, к ограниченности управляющего момента и, во-вторых, к тому, 
что кинетический момент – гладкая функция времени. Однако, чем больше 
k2, тем больше управляющий момент в начале и в конце разворота и тем бо-
лее продолжительным будет участок вращения, когда M близок к нулю и 
| L | ~ const. В практике космических полетов в ограничениях на движение КА 

Таблица 1. Варианты сочетания коэффициентов k1 и k2 для оптимального 
управления

Значения коэффициентов Характеристики
k1 = 0.001 с-2 , k2 = 0.02 Вт/с Еmax = 9.6 Дж

bmax = 1537.329 Н · м ·с
|M(0)| = 49.62 Н ·м

Т = 289.664 с
k1 = 0.01 с-2 , k2 = 0.2 Вт/с Еmax = 10 Дж

bmax = 1569.172 Н · м · с
|M(0)| = 156.92 Н · м

Т = 246.479 с
k1 = 0.25 с-2 , k2 = 4 Вт/с Еmax = 8 Дж

bmax = 1403.523 Н · м · с
|M(0)| = 701.76 Н · м

Т = 257.211 с
k1 = 0.025 с-2 , k2 = 0.4 Вт/с Еmax = 8 Дж

bmax = 1403.523 Н ·м ·с
|M(0)| = 221.92 Н · м

Т = 265.86 с
k1 = 0.002 с-2 , k2 = 0.04 Вт/с Еmax = 9.907 Дж

bmax = 1561.907 Н ·м ·с
|M(0)| = 70.176 Н ·м

Т = 271.2 с
k1 = 0.004 с-2 , k2 = 0.08 Вт/с Еmax = 9.99 Дж

bmax = 1568.291 Н · м · с
|M(0)| = 99.244 Н · м

Т = 258.102 с
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часто необходимо учитывать условия: |M| ≤ Mmax и E(t) ≤ Eper. Указанные тре-
бования будут выполнены, если k2 ≤ C2Mm

2
ax и k1 = k2 /(2Eper) (или k1 > C2Mm

2
ax/

(2Eper)), поскольку k2 = С 2 |M(0)|2.
Заключение. Исследована задача оптимального управления вращением 

КА из исходного углового положения в предписанное конечное угловое по-
ложение. Принятый нами показатель оптимальности включает как управляю-
щие функции, так и фазовые переменные, а также длительность маневра и 
характеризует энергетические затраты совместно с временем, расходуемым 
на переориентацию КА. Вопросы экономичности управления движением КА 
остаются актуальными и по сей день, поэтому решаемая в статье задача раз-
ворота является практически важной.

Чтобы решить поставленную задачу мы использовали кватернионные 
модели и принцип максимума Л.С.  Понтрягина. Для сформулированной 
оптимизационной задачи выписаны функция Гамильтона-Понтрягина, со-
пряженная система уравнений и аналитические выражения для оптималь-
ных управляющих функций. На основе необходимых условий оптимально-
сти определена структура оптимального управления. Обнаружены ключевые 
свойства разворота и тип траектории, соответствующей критерию (1.5). Даны 
соотношения для определения пространственного движения КА и доказа-
на единственность оптимального решения. Сделан вывод, что постоянной 
величиной является отношение квадрата модуля кинетического момента к 
кинетической энергии вращения КА. Записаны формулы (в аналитической 
форме) для расчета максимального модуля кинетического момента. Описана 
реализация программного разворота.

Ключевое отличие предложенного решения – минимизация затрат с но-
вым функционалом качества. Наличие в минимизируемом функционале ин-
теграла энергии ограничивает максимальную кинетическую энергию враще-
ния. Наличие третьего слагаемого в (1.5) ограничивает длительность разво-
рота (если бы k2 = 0, то оптимальный по критерию (1.5) разворот длился бы 
бесконечно долго, что недопустимо в практических применениях). Причем, 
максимальное значение подинтегрального выражения в первом интеграле по-
казателя (1.5) равно k2. Опираясь на свойства оптимального по критерию (1.5) 
управления, появляется возможность выбрать расчетные (желаемые) значе-
ния коэффициентов k1 и k2 минимизируемого функционала. Коэффициент k1, 
устанавливающий пропорцию между затратами управляющих усилий и инте-
гралом энергии вращения, определяет, насколько крутым или пологим будет 
изменение модуля кинетического момента во время оптимального разворота. 
Если k1 → 0, то модуль кинетического момента – квадратичная функция вре-
мени, максимум которой приходится на момент времени t = T / 2. Коэффици-
ент k2 определяет максимальный модуль управляющего момента. Кинетиче-
ская энергия вращения КА во время поворотного маневра определяется отно-
шением k2 / k1. Чем больше k1 и k2, тем ближе максимальная энергия вращения 
Еmax = Е(Т/2) к уровню E0 = k2 / (2k1). При неограниченном увеличении k1, k2 
оптимальный процесс стремится к импульсному управлению, когда участки 
разгона и торможения, когда управляющий момент неограниченно большой, 
бесконечно малы, и почти на всем интервале разворота КА вращается 
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практически по инерции (управляющий момент между импульсными, мож-
но сказать мгновенными разгоном и торможением пренебрежимо мал М ≈ 0).

Полученные результаты отличаются от решения работы [11], где найдено 
оптимальное релейное управление вместо непрерывного управления, полу-
ченного в нашем случае. Описывается алгоритм численного решения крае-
вой задачи для тел с произвольным распределением масс. Приведен пример 
математического моделирования, демонстрирующий поведение параметров 
оптимального движения. В частном случае динамически симметричного КА 
решение задачи оптимального управления доведено до конца: в аналитиче-
ском виде получена система уравнений, позволяющая напрямую найти ре-
шение двухточечной краевой задачи и рассчитать ключевые константы закона 
управления (для этого можем использовать устройство [35]).

Заметим, что в последние годы, из-за увеличения продолжительности актив-
ного существования КА (более 10 лет) и использования высокоточных (преци-
зионных) систем ориентации, интерес к ЭРД значительно возрос [36]. Бесспор-
ные преимущества ЭРД – возможность маленького единичного импульса тяги, 
большая точность дозирования импульсов, практически отсутствует импульс 
последействия, что обеспечивает особо точную ориентацию. Из-за невообрази-
мо высокой величины удельного импульса (до 6000–6500 с), широкое исполь-
зование ЭРД для управления КА (включая ориентирование КА в пространстве) 
– одна из ведущих и естественных тенденций в космической деятельности в 
мире. На многих КА в настоящее время используют ионные двигатели для 
управления ориентацией (в частности, при решении задач ориентации КА в 
космической программе США использовали ионные двигатели XIPS-25, разра-
ботанные корпорацией Boeing Space Systems). В случае управления с помощью 
ЭРД потребляемая электроэнергия достаточно близко оценивается величиной, 
пропорциональной первому слагаемому в (1.5); второй интеграл в показателе 
(1.5) ограничивает кинетическую энергию вращения, что также немаловажно 
в космическом полете. Учитывая необходимость снижения электропотребления 
ЭРД для управления КА с желательным уменьшением энергии вращения, ста-
новится понятным выбор минимизируемого функционала в форме (1.5).
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ANALYTICAL SOLUTION OF THE PROBLEM OF OPTIMAL 
CONTROL OF REORIENTATION OF SOLID BODY (SPACECRAFT), 

IN  SENSE OF A COMBINED CRITERIA OF QUALITY, BASED 
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Absrtact – The problem on optimal reorientation of a solid (spacecraft) from an 
initial position into a prescribed final angular position on the basis of quaternions is 
solved. A combined criteria of quality is used, combining in a given proportion the 
contribution of control forces and the duration of maneuver, as well as the integral 
of the rotational energy. The synthesis of optimal control is based on a differential 
equation relating the attitude quaternion and angular momentum of a spacecraft. 
Analytical solution of optimal control problem is obtained using the necessary 
conditions of optimality in the form of the Pontryagin’s maximum principle. The 
properties of optimal rotation are studied in detail. Formalized equations and 
computational formulas are written to construct the optimal rotation program. 
Analytical equations and relations for finding the optimal control are presented. 
Key relations that determine the optimal values of the parameters of rotation 
control algorithm are given. A constructive scheme for solving the boundary-value 
problem of the maximum principle for arbitrary turning conditions (initial and 
final positions and moments of inertia of a solid) is given also. The made numerical 
experiments confirm the analytical conclusions. In the case of a dynamically 
symmetric solid body, the problem of spatial reorientation with minimum energy 
and time consumption is completely solved (in closed form). An example and 
results of mathematical modeling that confirm the practical feasibility of the 
developed method for orientation control are given.

Keywords: control of reorientation, the combined criterion of optimality, maximum 
principle, control function, control algorithm, quaternion, the boundary-value 
problem
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