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Рассматривается задача о движении гантелеобразного тела по гори-
зонтальной шероховатой плоскости. Предполагается, что гантель пред-
ставляет собой невесомый нерастяжимый стержень, в двух точках кото-
рого сосредоточены массы. Эти точки взаимодействуют с плоскостью 
по закону Кулона–Амонтона. Также предполагается, что на стержень 
действует сила, постоянная в связанной со стержнем системе отсчета, и 
эта сила перпендикулярна стержню. Определяются условия, при кото-
рых стержень находится в покое, а также условия, при которых он может 
осуществлять вращение с постоянной угловой скоростью вокруг той или 
иной из своих взаимодействующих с опорой точек. Выявляется связь 
между величиной угловой скорости равномерного вращения и силой, 
обеспечивающей такое вращение. Строятся и анализируются бифурка-
ционные диаграммы.
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1. Введение. Среди задач, собранных Э.Дж. Раусом в его монографии 
по статике [1], отдельная глава посвящена равновесиям систем, подвер-
женных действию сил сухого трения. Среди прочих задач в разделе 189 об-
суждается задача об однородном тонком нерастяжимом прямолинейном 
стержне, лежащим на шероховатой плоскости и понуждаемым к движе-
нию силой, параллельной плоскости и перпендикулярной самому стержню. 
В дальнейшем эта система рассматривалась Н.Е. Жуковским [2] в качестве 
примера в задаче об условии равновесия твердого тела, опирающегося на 
неподвижную плоскость некоторой площадкой и могущего перемещаться 
вдоль этой плоскости с трением. Эта задача оказалась отправной точкой 
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для настоящего рассмотрения. Для упрощения вместо однородного стержня 
была рассмотрена пара массивных точек, соединенных невесомым нерастя-
жимым стержнем, лежащих на шероховатой плоскости и также как у Э.Дж. 
Рауса приводимых в движение силой, перпендикулярной стержню и действу-
ющей вдоль подстилающей плоскости. Кроме того, такая задача рассматри-
валась в работе Г.К. Пожарицкого [3], в которой были перечислены возмож-
ные типы движения и составлены уравнения движения. Свойства движения 
в случае равномерного распределения масс вдоль стержня изучались в [4] с 
помощью принципа максимума.

2. Постановка задачи. На невесомом нерастяжимом прямолинейном 
стержне в точках A и B расположены массы mA и mB. Стержень помещен на 
шероховатую горизонтальную плоскость, и в некоторой принадлежащей 
стержню точке C к нему приложена горизонтальная сила F, действующая пер-
пендикулярно стержню (рис. 1). Рассматриваются два частных случая. В пер-
вом случае действующая сила F уравновешивается силами сухого трения FA 
и FB в точках A и B соответственно, и стержень находится в покое. Во втором 
случае предполагается, что стержень совершает равномерное вращение с по-
стоянной угловой скоростью w. Ставится задача определения условий, при 
которых стержень а) покоится, б) совершает равномерные вращения около 
одной из точек A или B, или около центра масс – точки O. Будем полагать, что 
расстояние от A до B равно l, коэффициенты трения в точках A и B равны mA 
и mB соответственно. Предполагается также, что в отсутствие силы F стержень 
не напряжен.

Введем правую декартову систему отсчета Oxy с началом в центре масс. 
Будем считать, что ось Ox направлена вдоль стержня от A к B, а ось Oy ей пер-
пендикулярна. В этой системе отсчета

	 ( , ) , ( , ) , , ,0 0T T
A B A B B Ax x x M x M= = = − =OA OB l l

	 , , , .1A B
A B A B A B

m m
M M m m m M M

m m
= = = + + =

Пусть также OC = (c, 0)T — радиус-вектор точки C, в которой приложена 
сила F = (0, F)T.

3. Равновесие. Условие равенства нулю суммы сил, приложенных к 
стержню в проекции на ось Ox, выполнено тождественно, а в проекции на 
ось Oy эта сумма имеет вид, см. рис. 2: 

Рис. 1. Стержень на шероховатой горизонтальной плоскости под действием внешних сил.
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	 + + = 0A BF F F 	 (3.1)
Условие равенства нулю суммы моментов сил, приложенных к стержню, 

вычисленных относительно точки A, имеет вид:

	 ( ) 0.B AF F c x+ − =
	 (3.2)

Закон Кулона–Амонтона применительно к точкам A и B записывается как

	 , ,A A A B B Bm g m g≤ m ≤ mF F 	 (3.3)

где g — величина ускорения свободного падения. Из (3.1) и (3.2) находим:

	 ( ) ( ), , .1A B B B
c

F M F F M F= c − + = − c + c =
l

	 (3.4)

Подстановка соотношений (3.4) в (3.3) дает:

	 ( ) ( ), , , .1 A A
A B

B B B B

mF
M f K M f f K

m g m
m

c − ≤ c + ≤ = =
m m 	 (3.5)

Область на плоскости (c, f  ), задаваемая неравенствами (3.5), описывается 
как

	 min , min ,1 1
.

A B A B

K K
f

M M M M

   
− ≤ ≤ ∀c ∈   c − c + c − c +   



Таким образом, система находится в равновесии, если безразмерная коор-
дината c точки приложения силы и обезразмеренная сила f удовлетворяют 
неравенству (3.5).

Решение неравенств (3.5) зависит от отношения масс mA и mB, а также от 
значения параметра K: 0 ≤ K < ∞. Выделим три качественно различных случая:

а) 0 ≤ K < 1;
б) K = 1;
в) K  > 1.

Рис. 2. Равновесие стержня на шероховатой горизонтальной плоскости под действием 
внешних сил.
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Для этих случаев области на плоскости параметров (c, f  ), в которых выпол-
нено неравенство (3.5), изображены на рис. 3.

Здесь

	 ( ), , , .1 1
1 1A A

K K
P M K Q M K

K K± ±
   = + ± − = − ± +      − +

Система находится в равновесии пока значения параметров остаются в за-
крашенной области. Выход из этой области возможен либо по причине на-
рушения первого из неравенств (3.5), либо по причине нарушения второго 
из неравенств (3.5). Точка A начинает скользить при выходе из означенной 
области через часть границы, не содержащей интервалы P±Q± для 0 ≤ K < 1 
(рис. 3), через часть границы, расположенную слева от точек Q± для K  = 1, и 
через часть границы, не содержащую интервалы P±Q± для K  > 1. В остальных 
случаях начинает скользить точка B.

4. Вращения вокруг точки A. Пусть система равномерно вращается вокруг 
точки A. Тогда имеет место ситуация, изображенная на рис. 4. Силу трения 
в точке A представим как FA = (FAx, FAy). Скорость точки B перпендикулярна 
стержню AB. Сила трения скольжения в точке B, имеющая вид FB = (0, FBy), 
направлена в сторону, противоположную скорости точки B. Наконец, соглас-
но закону Кулона–Амонтона:
	 .2 2 2 2 2

A A A Ax Ay A AF m g F F m g≤ m ⇔ + ≤ m 	 (4.1)
Итак, в силу равномерности вращения центростремительное ускорение 

точки B отлично от нуля и неизменно по величине, а угловое ускорение рав-
но нулю. Из условия баланса сил в проекциях на оси Ox и Oy соответственно 
имеем:
	 ( ), , ( ) .2 0 0 signB Ax Ay A B B A Am F F F m g F c x− w + = + − ε m = ε = ⋅ −l

	 (4.2)
По теореме об изменении момента количеств движения, выписанной от-

носительно точки A, имеем:

	 ( ) .0A A B BF c x m g⋅ − − ε m =l 	 (4.3)

Рис. 3. Множество точек на плоскости (c, f  ), где выполнены неравенства (3.5), при 
0 ≤ K < 1 (a), K  = 1 (б), K  > 1 (в).



	 О РАВНОВЕСИЯХ И РАВНОМЕРНЫХ ВРАЩЕНИЯХ...� 37

Тогда из (4.3) следует:

	 ,A B B
A

F m g
c x

= ε m
−
l

а из (4.2) после преобразований находим:

	 2 , .B
Ax B Ay A B B

A

c x
F m F m g

c x
−

= w = ε m
−



Тогда в силу (4.1) точка A остается неподвижной при выполнении условия:

	 ( ) .
2

22 2 2 2B
B B B A A

A

c x
m m g m g

c x
− 

w + m ≤ m − 
l

или в безразмерном виде

	 , .
2

4
2

1
1A B

B A A

M M
M M gK

c − 
W + ≤ W = w c + m 

l

	 (4.4)

Рассмотрим соотношение (4.4) подробнее. Для границы области имеем:

	 , ,0
1A A A

K
M

K
W = ⇒ c = ± c c = −

±

	 , .
2

4
2 2

0 1 A
A A

B

M

K M
c = ⇒ W = ±W W = −

Кроме того, (MA, 1) — точка локального максимума верхней ветви гранич-
ной кривой на плоскости (c, W), в то время как (MA, –1) — точка локального 
минимума нижней ветви этой же кривой. Наконец, при K  ≥ 1 граничные кри-
вые при c → ±∞ асимптотически стремятся к прямым

	 ,W = ±W W = −4
2

1
1A A

K
 

Рис. 4. Распределение сил в случае равномерного вращения стержня вокруг точки A.
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5. Вращения вокруг точки B. Если же предположить, что система равно-
мерно вращается вокруг точки B, то имеет место ситуация, изображенная на 
рис. 5.

В этом случае стержню AB перпендикулярна скорость точки A. Сила тре-
ния в точке A направлена против этой скорости и составляет:

	 ( )( )(0,sign ) .T
A B A AF c x m g= ⋅ − mF

Силу трения в точке B представим как FB = (FBx, FBy)T. Согласно закону 
Кулона–Амонтона:
	 .2 2 2 2 2

B B B Bx By B Bm g F F m g≤ m ⇔ + ≤ mF 	 (5.1)

В силу предположения о равномерности вращения аналогично центро-
стремительное ускорение точки A отлично от нуля, а угловое ускорение рав-
но нулю. Из условия баланса сил в проекциях на оси Ox и Oy соответственно 
имеем:
	 ( )( ), , .2 0 0 signA Bx By B A A B Bm F F F m g F c x− w + = + + ε m = ε = ⋅ −l 	 (5.2)

Из теоремы об изменении момента количеств движения относительно точ-
ки B имеем:
	 ( ) .0B B A AF c x m g⋅ − − ε m =l 	 (5.3)

Тогда из (5.3) следует:

	 ,B A A
B

F m g
c x

= ε m
−
l

а из (5.2) после преобразований находим:

	 , .2 A
Bx A By B A A

B

c x
F m F m g

c x
−

= w = − ε m
−

l

В силу (5.1) точка B остается неподвижной при выполнении условия:

	
 − 

w + −ε m ≤ m  −  

2
2 2 2 2 2( ) A

A B A A B B
B

c x
m m g m g

c x


или в безразмерном виде:

Рис. 5. Распределение сил в случае равномерного вращения стержня вокруг точки B.
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	 .
22

2 4 2
2

1A B

AB

M M
K K

MM

c + 
W + ≤ c − 

	 (5.4)

Рассмотрим соотношение (5.4) подробнее. Имеем:

	 , ,0
1 1

A B
B B A

M KM K
M

K K
± ± ± −

W = ⇒ c = ± c c = = −
± ±

	 , , .
2 2

4
2 2 2

1
0 B B

B B
A A

M M

M K M

 
c = ⇒ W = ±W W = −  

Кроме того, если 

	 ** ,1 B
B

A

M
K M

W =

то (–MB, WB
**) — точка локального максимума верхней ветви граничной кри-

вой, в то время как (–MB, –WB
**) — точка локального минимума нижней ветви 

этой же кривой. Наконец, при K  ≤ 1 граничные кривые при c ± ∞ асимптоти-
чески стремятся к горизонтальным прямым

	 * * *, .
22

4
2 2

1 B
B B

A

MK

K M
±

−
W = ±W W =

6. Вращения вокруг центра масс О. Исследуем вопрос о том, при каких усло-
виях гантель допускает вращения вокруг центра масс – точки O с постоянной 
угловой скоростью w. Из уравнений движения точек A и B в проекциях на ось 
Ox имеем:
	 2 2,A A B Bm x T m x− w = = w

где T — натяжение стержня. Отсюда
	 .A A B Bm x m x− = 	 (6.1)

Далее, поскольку проекция суммы сил на ось Oy при равномерном враще-
нии равна нулю, имеем:
	 ( ) ( ), .0 signA A B BF m g m g F c+ ε m − m = ε = ⋅ 	 (6.2)

Наконец, из уравнения баланса момента имеем
	 ( ) ,0A A A B B BF c m x g m x g⋅ − ε m − m = 	 (6.3)
где, напомним, (c, 0)T — координаты точки C приложения силы F.

Система (6.1)—(6.3) линейна и однородна относительно неизвестных mA, 
mB, F. Для того чтобы существовало нетривиальное решение, определитель 
отвечающей ей матрицы должен обращаться в нуль:

	 ( ) ( )
0

det 1 0,
A B

A B A B B A A B A B

A A B B

x x

g g g x x c x x

x g x g c

 
   εm −εm = −ε m + m + m + m =  
−εm εm 
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откуда

	 .A B
A B

A B A B
c x x

x x
m + m

= −
m + m

Опираясь на введенные выше обозначения, имеем:

	
( )

.1 A B A BA B
B A

B B A A A A B B

M M
M M

M M M M

m + mm + m
c = =

− m + m m − m
l l

l l l

Примечательно, что при заданной величине вынуждающей силы F и точке 
ее приложения, определяемой равенством (6.4) вращение возможно с произ-
вольной угловой скоростью, направление которой согласовано с направлени-
ем действия силы F.

7. Бифуркационные диаграммы. Для некоторых значений параметров би-
фуркационные диаграммы на плоскости (c, W) изображены на рис. 7–9. Для 
значений параметров из светло-серой области существуют равномерные вра-
щения системы около точки A. Для значений параметров из темно-серой об-
ласти существуют равномерные вращения системы около точки B.

Примем W в качестве бифуркационного параметра. Ограничимся изобра-
жением лишь тех случаев, когда mA = mB .

7.1. Случай K = 1. При W  < –1 равномерные вращения вокруг концов ганте-
ли не могут быть реализованы. Далее, при W =  –1 существуют ровно две силы 
F, обеспечивающие равномерное вращение гантели вокруг точек A и B соот-
ветственно с данной угловой скоростью. При каждом значении W: –1 ≤ W ≤ 1 
силы F, обеспечивающие равномерное вращение гантели вокруг точек A и B, 
составляют целые множества FA и FB, имеющие общие точки лишь при W = 0. 
При каждом W ≠ 0 каждое из этих множеств представляет собой отрезок. При 
W → 0 один из концов таких отрезков стремится к точке (0, 0), а для другого 
c → ∞ для множества FA и к c → ∞ для множества FB. С дальнейшим возраста-
нием W эти множества сокращаются и, наконец, исчезают при W =  1. Иначе 
говоря, для каждого наперед заданного значения W: –1 < W < 1 существуют це-
лые континуальные семейства приложенных сил, обеспечивающих вращение 
с указанной угловой скоростью.

Рис. 6. Распределение сил в случае равномерного вращения стержня вокруг точки O.
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7.2. Случай K > 1. Для случая K > 1 (рис. 8) ситуация несколько иная. При 
W < –1 равномерные вращения вокруг хотя бы одной из точек A и B невозмож-
ны. При W = –1 рождается связная компонента F1A множества FA, отвечающе-
го вращениям вокруг точки A. Эта компонента остается единственной при 

–1 < W ≤ –WA
* . При W  = –WA

* “приходит из минус бесконечности” вторая связная 
компонента F2A. С возрастанием W до 0 обе эти компоненты увеличивают-
ся. Но после прохождения параметром W нулевого значения эти компоненты 
начинают уменьшаться. При W  = WA

* компонента F2A исчезает. Следом за ней, 
при W = 1 исчезает и компонента F1A. Вместе с тем при W  = –WB

** рождается 
множество FB, отвечающее вращениям вокруг точки A. Это множество состо-
ит из одной континуальной компоненты FB. С возрастанием W до 0 компо-
нента FB увеличивается. При W = 0 она приходит в соприкосновение с компо-
нентами F1A и F2A. При дальнейшем возрастании параметра W компонента FB 
уменьшается и исчезает при W  = WB

**.
7.3. Случай 0 < K < 1. Наконец для случая, когда 0 < K < 1 (рис. 9), при 

W  < –WB
** равномерные вращения вокруг хотя бы одной из точек A и B суще-

ствовать не могут. Далее, при W  = –WB
** появляется возможность равномерных 

Рис. 7. Случай mA = mB, K = 1.

Рис. 8. Случай mA = mB, K  = 2.
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вращений вокруг точки B: рождается связная компонента F1B множества FB. 
Эта компонента остается единственной пока W  < –WB

*. 
При W  = –WB

* с бесконечности “приходит” F2B – вторая компонента мно-
жества FB. Обе компоненты увеличиваются при W → 0. Однако при дальней-
шем увеличении W компоненты F1B и F2B начинают уменьшаться. При W  = WB

* 
исчезает компонента F2B, а при W  = WB

** – и компонента F1B.
Вместе с тем, при W = –1 рождается связная компонента FA, увеличиваю-

щаяся при W → 0 и соприкасающаяся с компонентами F1B и F2B при W = 0. При 
дальнейшем возрастании W компонента FA уменьшается, стягивается в точку 
при W = 1 и исчезает при W  > 1.

8. Общие замечания и выводы. Исследования движения систем при на-
личии сухого трения имеют давнюю историю (см. [5]). Систематическое ис-
следование систем с трением восходит к классическим работам Дж.Х. Джелле-
та [6], П. Пэнлеве [7], Е.А. Болотова [8] и уже упомянутых работ Э.Дж. Рауса 
[1] и Н.Е. Жуковского [2]. Заметим, что именно работа над переводом соот-
ветствующего раздела монографии [1] побудила интерес авторов к рассмот-
рению изучаемой задачи. Следует заметить, что по всей видимости, задачи 
с трением были предметом отдельного внимания в учебных курсах по механи-
ке, по крайней мере в Англии, поскольку они почти каждый год встречаются 
в вариантах выпускных состязаний (“Tripos”) в местных университетах. Из 
современных книг по механике систем с трением можно выделить моногра-
фии [9–13].

Среди многочисленных работ по исследованию движения систем с трени-
ем выделим публикации [14, 15], посвященные исследованию естественных 
обобщений “скамьи Жуковского” (“бипода”), а также ряд публикаций, посвя-
щенных различным аспектам динамики “трипода” — твердого тела, опираю-
щегося на поверхность в трех точках [16–18]. Отдельный круг исследований 
посвящен системам с более чем тремя точками контакта [19–25], возникаю-
щих, в частности при изучении керлинга [26–29].

Наконец, заметим, что имеется ряд работ, в которых развивалась общая 
теория существования и бифуркаций неизолированных в общем случае рав-
новесий систем с сухим трением [30–34], и был рассмотрен ряд примеров 

Рис. 9. Случай mA = mB, K  = 1/2.
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[35–44]. Наработанные методики были использованы при выполнении на-
стоящего исследования.

Движение стержня с неравномерным распределением масс по плоскости 
при наличии анизотропного трения изучалось в [45]. Установлена зависи-
мость траектории центра масс от его смещения относительно геометрическо-
го центра стержня.

Влияние асимметричного ортотропного трения на движение материальной 
точки по инерции изучалось в [46]. В частности, в этой работе была решена 
задача о равновесии и начале движения двухмассовой системы.

Работа первого (пункты 1, 2 и 8) и третьего (пункты 3, 4 и 5) авторов вы-
полнена при поддержке РНФ, грант № 24-21-20143.
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Abstract – A problem of motion of a dumbbell-shaped body on a horizontal rough 
plane is considered. It is assumed that the dumbbell is a weightless inextensible rod, 
with masses being concentrated at two points of it, and there is dry friction between 
these points and the plane. It is also assumed that a constant force acts perpendicu-
lar to the rod on some fixed point on it. The conditions under which the rod is at 
rest, as well as the conditions under which the rod uniformly rotates around one of 
its points of support, are determined. The relationship between the magnitude of 
the angular velocity of uniform rotation and the force providing such a rotation is 
revealed. Bifurcation diagrams are constructed and analyzed.

Keywords: dry friction, bifurcations, equilibria, uniform rotations, steady move-
ments
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