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Разработана численно-аналитическая модель структурной механики 
многонаправленно армированных металлокомпозитов, работающих 
в  условиях кратковременной ползучести. Материалы компонентов ме-
таллокомпозиции однородны и изотропны; учитываются их термочув-
ствительность и термоупругопластическое деформирование. Пластиче-
ское поведение фаз композиции описывается соотношениями теории 
течения с изотропным упрочнением. В качестве параметра поврежден-
ности компонентов металлокомпозиции используется их относительная 
механическая деформация, накопленная в процессе нагружения, – де-
формационный критерий разрушения при кратковременной ползу-
чести металлов. Для построения указанной математической модели 
в силу существенной ее физической нелинейности применен алгоритм 
переменных шагов по времени. Линеаризация определяющих уравне-
ний для компонентов и металлокомпозиции в целом на каждом шаге по 
времени осуществляется с применением метода, аналогичного методу 
секущего модуля. На примере безмоментных цилиндрических оболочек 
продемонстрировано: в силу существенно физической нелинейности 
моделируемой задачи варьирование структуры армирования в металло-
композитных конструкциях, работающих в условиях кратковременной 
ползучести, оказывает существенно большее влияние на их механиче-
ский отклик, чем при работе в условиях термоупругого деформирова-
ния. С повышением температуры эксплуатации металлокомпозитного 
изделия это влияние резко возрастает. При некоторых, в частности ра-
циональных, структурах армирования материалы металлокомпозиции 
изделия могут деформироваться, проявляя признаки, присущие огра-
ниченной ползучести. При таких структурах армирования конструкция 
может эффективно работать и в условиях длительного нагружения, а не 
только при кратковременной ползучести.

Ключевые слова: многонаправленное армирование, кратковременная 
ползучесть, термоупругопластическое деформирование, термочувстви-
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1. Введение. Изделия из композиционных материалов (КМ) активно ис-
пользуются в современной инженерной практике [1–5]. При этом в процессе 
эксплуатации они часто подвергаются высокоинтенсивному термосиловому 
нагружению [2, 3, 5, 6], что вызывает неупругое деформирование компонен-
тов их композиции [2, 3, 6–12], в том числе и деформации ползучести [1, 7, 8, 
11, 13–19]. В силу этого актуальной является проблема моделирования пол-
зучести как материалов фаз композиций [7, 8, 13–15, 18–22], так и армиро-
ванных сред [17, 23–29], причем в общем случае при учете их пластического 
деформирования [11, 13–15, 26, 29]. На сегодняшний день последняя часть 
этой проблемы, касающаяся КМ, находится, по сути, на стадии становления.

Так, в [24, 25] моделировалась ползучесть однонаправленно армированных 
сред, причем рассматривались либо частные случаи нагружения [24], либо 
вязкое деформирование только одного из компонентов композиции – связу-
ющего материала [25]. В работах же [27, 28] были разработаны модели много-
направленно армированных КМ с плоскопараллельными и пространственны-
ми структурами армирования, компоненты композиции которых деформиру-
ются в условиях установившейся анизотропной ползучести. В [29] предложена 
модель неустановившейся ползучести перекрестно армированной среды, де-
формирование фаз композиции которой описывается уравнениями состоя-
ния нелинейно-наследственной теории [19]. В рамках последней структур-
ной теории удалось учесть механическое поведение компонентов композиции 
на первой и второй стадиях ползучести, т.е. на стадии упрочнения и стадии 
установившейся ползучести. Однако до сих пор еще не разработаны модели 
деформирования многонаправленно армированных КМ, в рамках которых 
учитывалась бы и третья стадия ползучести (стадия предразрушения) их суб-
структурных элементов.

В силу всего вышеизложенного настоящее исследование посвящено по-
строению структурной модели перекрестно армированных металлокомпози-
тов, работающих в условиях кратковременной ползучести при учете возмож-
ного пластического деформирования их компонентов композиции, а также 
изучению влияния структур армирования на время начального разрушения 
тонкостенных элементов конструкций типа безмоментных КМ-оболочек, 
эксплуатирующихся в указанных условиях.

2. Структурная модель кратковременной ползучести многонаправленно ар-
мированного КМ при учете его пластического деформирования. Предполагаем, 
что композит состоит из металлического связующего материала, усиленного 
по разным направлениям N семействами металлических волокон (проволок) с 
плотностями армирования mk (1 ≤ k ≤ N). Согласно традиционным представле-
ниям [7, 8, 13–15, 18, 19, 21, 22], считаем, что скорости малых деформаций .eij

(k) 
изотропного k-го компонента композиции можно представить в виде суммы 
скоростей упругих .eij

(k), несжимаемых пластических  .pij
(k) и температурных dij 

.eQ(k) 
деформаций, а также скоростей несжимаемых деформаций ползучести  .cij

(k):
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где ak – коэффициент линейного теплового расширения k-го материала 
композиции (k = 0 – связующая матрица, k ≥ 1 – арматура k-го семейства); 
Q – температура металлокомпозиции; dij – символ Кронекера; точка свер-
ху означает частную производную по времени t. Для тензорных величин по 
повторяющимся нижним индексам осуществляется суммирование от 1 до 3.

Используя разложение упругих деформаций eij
(k) на девиаторную eij

(k) и ша-
ровую dije0

(k) составляющие (e0
(k) = ell

(k)/3, eij
(k) = eij

(k) – dije0
(k)), закон Гука для k-й 

фазы композиции можно записать так [19]:
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где
( )
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sij
(k) – напряжения в k-м компоненте композиции, Ek и nk – модуль упругости 

первого рода и коэффициент Пуассона материала этого компонента, которые 
в общем случае могут зависеть от температуры: Ek = Ek(q) и nk = nk(q).

Пластическое деформирование k-го материала композиции описывается 
теорией течения с изотропным упрочнением, причем поверхность нагруже-
ния fk = 0 соответствует критерию текучести Мизеса [8, 19]:

	 ( ) ( )( ), , , ,2 2 0 0k
k k k k s kf T T k Nc Q ≡ − t c Q = ≤ ≤ 	 (2.4)

или, что то же самое,

	 ( )( ) , , ,0k
k s kT k N= t c Q ≤ ≤ 	 (2.5)

где

	 ( ) ( ) ( ) ( ), , ,
0

1
2 0

2

t
k k k k

k ij ij k ij ij

t

T s s p p dt k N= c = ≤ ≤∫  
	 (2.6)

Tk – интенсивность касательных напряжений в k-м субструктурном элементе 
композиции, ts

(k) – предел текучести при чистом сдвиге для того же материа
ла, ck – параметр упрочнения (параметр Одквиста), t0 – начальный момент 
времени.

На основании ассоциированного закона пластического течения при учете 
соотношений (2.4) и (2.6) в случае активного нагружения k-го компонента 
композиции имеем (см. равенство (6) в [30]):
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При этом для свертки в правой части соотношения (2.7) имеем выражение 
(см. вывод равенства (18) в [30]): 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,1 11 0k k k k k k k
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− −
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(2.9)

Gk – касательный модуль k-го материала композиции при чистом сдвиге.
После подстановки выражения (2.8) в равенство (2.7) при учете разло-

жения (2.1) получим следующее представление для скоростей пластических 
деформаций:

  ( )( ) ( ) ( ) ( ) ( ) ( )( ) , , , , , ,1 1 2 3 0k k k k k kk
ij k k s ijlm lm lmp A s c G s i j k N−
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Добавим к обеим частям равенства (2.10) величину ( ) ( ) ( )( )0
k k k

ij ij ij ke c e+ + d + a Q

   
и из правой части исключим ( )k

ije  и ( )
0

ke , используя закон Гука (2.2), тогда при 
учете в левой части преобразованного соотношения (2.10) разложения (2.1) 
будем иметь
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(2.12)

где pk – параметр переключения: pk = 0 при отсутствии пластических деформа-
ций (pij

(k) = 0), нейтральном нагружении или разгрузке k-го компонента компо-
зиции, pk = 1 при активном пластическом деформировании этого материала. 
Значения параметра pk при учете равенства (2.5) вычисляются по формуле (см. 
соотношения (22) и (23) в [30])
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При учете выражений (2.3) равенство (2.12) преобразуется к виду:
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Определим скорости деформаций ползучести ( )k
ijc  в соотношении (2.14). 

На стадии установившейся ползучести эти величины выражаются так [13, 15, 
18, 19]:
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Fk и Фk – функции указанных аргументов, которые известны из эксперимен-
тов на установившуюся ползучесть. Так, в случае степенного закона устано-
вившейся ползучести x = Bsm, в котором B = B(q) и m = m(q) – характеристики 
материала, а s и x – осевое напряжение и соответствующая ему скорость де-
формации ползучести, в соотношениях (2.16) имеем [13]:

( ) ( )( ) ( ) ( ) ( )( )( ) , ( , ) ( )( ) , ,1 0k km mk k k k
k k kc B B k NQ Q −

∗ ∗ ∗ ∗= Q s Φ s Q = Q s ≤ ≤ 	 (2.17)

где Bk и mk – механические характеристики k-го материала композиции, за-
висящие от ее температуры.

В условиях кратковременной ползучести стадия упрочения в металличе-
ских материалах почти не проявляется, поэтому при математическом модели-
ровании ее не учитывают. Для описания же второй и третьей стадий ползуче-
сти следует использовать модифицированные равенства (2.15) [14]:
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(2.18)

где wk – параметр поврежденности k-й фазы композиции (0 ≤ wk ≤ 1), dk > 0 и 
gk > 0 – характеристики материала этой фазы, определяемые из условия оп-
тимальной аппроксимации кривых его кратковременной ползучести (в рабо-
те [14] принято dk = gk = 1). Параметры dk и gk в общем случае могут зависеть 
от температуры Q и напряженного состояния (в частности от интенсивности 
напряжений s*

(k)). Соотношения (2.18) при учете выражений (2.16) и (2.17) 
позволяют описать как стадию установившейся ползучести (при значениях 
wk ≈ 0), так и стадию предразрушения (при значениях wk ≈ 1) k-го компонента 
металлокомпозиции, которые характерны для кратковременной ползучести, 
и являются обобщением одномерных соотношений из [14].
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Равенства (2.15), а значит и (2.18), в силу соотношений (2.16) записаны 
в форме, соответствующей экспериментам на ползучесть при растяжении и 
сжатии образцов, а пластические свойства в равенствах (2.13) и (2.14) описа-
ны в форме, соответствующей экспериментам на чистый сдвиг. С целью уни-
фикации указанных соотношений в равенствах (2.13) и (2.14) целесообразно 
сделать следующие замены [7, 13, 19]:

	 ( ) ( )( ) ( ) / , / , , / , ,3 3 3 3 0k kk k
s s k k k kG E k NQ Qt = s t = s c = c = ≤ ≤ 	 (2.19)

где
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s k s kk k
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k
E EQ Q

∂s c Q ∂s c Q
s = s c Q ≡ = c Q ≡

∂Q ∂c 	 (2.20)

ss
(k) – предел текучести k-го компонента композиции при растяжении и сжа-

тии, ck – параметр Одквиста (см. выражения (2.6)) при тех же условиях нагру-
жения, Ek – касательный модуль этого материала при растяжении и сжатии.

Подставим выражения (2.18) в равенства (2.14) и учтем соотношения (2.19) 
и (2.20), тогда окончательно получим определяющие уравнения для k-го 
компонента металлокомпозиции при его кратковременной ползучести:

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

. ( )

( / ) ,

, , , , ,

1 1

2 1

0 5 3

2 3

1 2 3 0

k k k k k k k k
k k k ij k k k ijij ij ij ijlm lm ll ll

k k kk k
k k k s ij k k k k sij ij

A s s G E

A s G A s

i j k N

− −

−
Q

e − p e = s − d n s + Y s − d s −

− p Y s + d a − p s s Q

= ≤ ≤

   

 	 (2.21)

где (см. выражения (2.11), (2.13) и (2.16))

( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )( )

( , )
( , ) , , ,

( , )[ ( , )]

, , ,

, , ,

, ( ) [( )

2

3
32 1

0 при или и 0

1 при и 0 0

1
3 2 1 1

2
k kk

k k
k k k k kk

ks k k k

k k k k
s k s k k

k k k
s k k

k k kk
k s k kij ij k k

E
A A g

Gg

W

W k N

W s

∗ ∗

∗

g g−d −
Q

c Q
= c Q ≡ c Q ≡

s c Q + c Q

 s < s c Q s = s c Q ≤p = 
s = s c Q > ≤ ≤

≡ s − s s Q Y ≡ − w Φ − w



( ), ].k kd
∗s Q

	 (2.22)

Как и в работах [27–30], для удобства дальнейшего изложения равенства 
(2.21) при учете соотношений (2.22) целесообразно записать в матричной 
форме:
	 , .0k k k k k k k k N= + + Q ≤ ≤Z Y Ve s s b 

 	 (2.23)
Здесь и далее:

 

( ) ( )
( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

,

,

т т

51 2 3 4 11 22 33 23 31 126

т т

51 2 3 4 11 22 33 23 31 126

т

51 2 3 4 11 22 336

2 2 2

k k k k k k k k k k k k
k

k k k k k k k k k k k k
k

k k k k k k k k
k s s s s s s s s s

= s s s s s s ≡ s s s s s s

= e e e e e e ≡ e e e e e e

= ≡s

s

e

( )) ( ) ( ) ( ) ,
т

23 31 12
k k k ks s s

	 (2.24)
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Zk = (zij
(k)), Yk = (yij

(k)) и Vk = (vij
(k)) – симметричные 6×6-матрицы, bk = (bij

(k)) – ше-
стикомпонентный вектор-столбец, ненулевые элементы которых выражаются 
так:

	 ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

, , ,

( , , , , , , , ),

, , ( , , , , , ),

,

1
1

2

1 3 4 6 1 6

1 1
1 3 4 6

2

2 3

k k k k k k
ii k k i i il k k i jj k k j jl

k k
jl k k j l

k k kk
ii jjil

k k k

k k k k
ii k k k i i il

z A s s z A s s z A s s

z A s s i l j l i j l

y y y i l i l j
E E G

v A s s v

= − p = −p = − p

= −p ≠ ≠ = = =

n
= = − = ≠ = =

= Y − p = − ( )

( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

,

( , , , , , ),

, ,

, / ,1

1

1 3

6 1 3 4 6

3 1 2 3

6 3

k k
k k k i l

k k k
ij k k k i j

k k k k k k
k k k k k k ill l l li l

k k k k k kk
k k k j i k k k k s ilj l

k k
k k kl

A s s

v A s s i l i l j

v A s s v A s s

v A s s G A s

G A

−
Q

−
Q

Y − p

= − p Y ≠ = =

= Y − p = − p Y

= − p Y b = a − p s s

b = −p s ( )( ) / ( , , , , , ),3 1 3 4 6kk
s ls i l i j ls ≠ = =

	 (2.25)

индекс “т” – операция транспонирования. В соотношениях (2.25) по повто-
ряющимся индексам суммирование не производится.

Согласно равенствам (2.22) и (2.25), уравнения (2.21) и (2.23) существенно 
нелинейны, поэтому для построения в последующем решений соответству-
ющих начально-краевых задач о неупругом деформировании армированных 
конструкций в условиях неустановившейся ползучести целесообразно исполь-
зовать метод шагов по времени [19, 29, 30]. В силу этого ниже рассматриваем 
соотношения (2.23) в дискретные моменты времени tn+1 = tn + D (n = 0, 1, 2, ...), 
где D > 0 – шаг по времени, который может быть и переменным: D = Dn. Преоб-
разуем равенства (2.23), применяя формулу трапеций, которая для некоторой 
функции от времени f(t) имеет вид [31]:

	 ( )11

2

n nn n
f f f f

++ D
− = + 

откуда следует

	
/

,
1 1 1 22 2n n n

f f f
+ + +
= −
D D

 	 (2.26)

где

	 ( ) ( )
/

, , .
1 2

2

n nn n n

n nf f f f f t f f t
+ D

≡ + ≡ ≡   	 (2.27)

Замечание. Если при t = tn значения  
n
f и  

n

f
.
 уже определены, то на основании 

выражений (2.27) последнее слагаемое в равенстве (2.26) в момент времени 
tn+1 известно.
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Используя соотношения, аналогичные формулам (2.26) и (2.27), исключим 
из уравнений (2.23) все частные производные по t в рассматриваемый момент 
времени tn+1, тогда получим

 
/ / /

, ,
1 1 1 2 1 1 2 1 1 1 1 1 22 2 2

0
n n n n n n n n n n

k k k k k k k k k k N
+ + + + + + + + + +     

− = − + + Q − Q ≤ ≤     D D D     
Z Y Ve e s s s b 	(2.28)

где

	
/ / /

, , , .
1 2 1 2 1 2

0
2 2 2

nn n n n n n n n

k k k k k k k N
+ + +D D D

≡ + ≡ + Q ≡ Q+ Q ≤ ≤e e e s s s 

 	 (2.29)

В дальнейшем считаем, что все величины в правых частях соотношений 
(2.29), согласно замечанию, уже вычислены в предшествующий момент вре-
мени tn.

С целью использования результатов работ [27–30] в равенствах (2.28) 
напряжения выразим через деформации, тогда при t = tn+1 для k-го компонен-
та композиции получим определяющее уравнение в следующей матричной 
форме:

	 , , , , ,...
+ + + +
= + ≤ ≤ =

1 1 1 1

0 0 1 2
n n n n

k k k k k N nB ps e 	 (2.30)
где

	
/ / /

,

.

11 1 1

11 1 1 2 1 1 2 1 1 2 1

2

2

n n n

k k k k

n n n n n n n n

k k k k k k k k

−+ + +

−+ + + + + + + +

D 
≡ + 
 

 D   
≡ + − + Q − Q    
    

B Y V Z

p Y V Y Zs e b 	 (2.31)

При моделировании кратковременной ползучести армированной среды 
соответствующую термомеханическую задачу можно считать несвязанной [7, 
8, 13, 14, 18, 19], поэтому предполагаем, что в текущий момент времени tn+1 
в соотношениях (2.28) и (2.31) кроме величины 

n+
Q

1/2
 уже определено и значе-

ние 
n+
Q

1
, которое известно из предварительного решения задачи теплопровод-

ности для КМ-среды или соответствующей КМ-конструкции. На основании 
этого в случае учета термочувствительности упругих характеристик компонен-
тов композиции элементы матрицы Yk в соотношениях (2.28) и (2.31) хоть и 
зависят от температуры Q, но уже известны при t = tn+1.

Согласно выражениям (2.25) и (2.31) при учете соотношений (2.16), (2.17) 
и (2.22), получаем, что в рассматриваемый момент времени tn+1 определяющее 
уравнение (2.30) является существенно нелинейным. Как и в работах [27–30], 
считаем, что соотношение (2.30) линеаризовано с использованием метода, 
аналогичного методу переменных параметров упругости [7, 32] (или методу 
секущего модуля, по терминологии из [13]). На основании этого на текущей 

итерации данного метода 6×6-матрицу ( )
11 nn

k
k ijb

++  
 =  B  и шестикомпонентный 
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вектор-столбец ( )( )
11 nn

k
k ip

++
=p  (i, j = 1, 6) в равенстве (2.30) предполагаем далее 

известными.
С каждым k-м семейством арматуры свяжем локальную ортогональную си-

стему координат xi
(k) так, чтобы ось x1

(k) совпадала с направлением траектории 
волокна, а оси x2

(k) и x3
(k) были перпендикулярны этой траектории (рис. 1). При 

этом направление армирования k-м семейством волокон однозначно задается 
углами сферической системы координат qk и jk. Направляющие косинусы lij

(k) 
локальных осей xi

(k) относительно осей глобальной ортогональной системы 
координат xj (i, j = 1, 2, 3) вычисляются по формулам:

	

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

sin cos , sin sin , cos ,

sin , cos , ,

cos cos , cos sin , sin , .

11 12 13

21 22 23

31 32 33

0

1

k k k
k k k k k

k k k
k k

k k k
k k k k k

l l l

l l l

l l l k N

= q j = q j = q

= − j = j =

= − q j = − q j = q ≤ ≤

	 (2.32)

Для получения приемлемых в инженерных приложениях определяющих 
уравнений неупругого деформирования рассматриваемого КМ в условиях 
кратковременной ползучести используем гипотезы структурной механики 
композитов, аналогичные принятым в [27–30, 33]:

1. На макроуровне КМ в пределах репрезентативной ячейки рассматрива-
ется как однородное анизотропное тело. (При достаточно плотном и равно-
мерном наполнении связующей матрицы тонкими армирующими элементами 
это предположение вполне приемлемо [33].)

2. Между связующим и арматурой реализуется идеальный термомехани-
ческий контакт.

3. В пределах репрезентативной ячейки КМ, рассматриваемой на мини-
уровне, напряжения, деформации и их скорости во всех компонентах кусоч-
но-постоянны, а в композиции в целом, согласно допущению 1, постоянны. 
Эффектами высших порядков, связанными с локальными изменениями полей 
напряжений, деформаций и их скоростей на микроуровне в малых окрестно-
стях границ контакта арматуры со связующим, пренебрегаем.

Рис. 1. Взаимная ориентация глобальной и локальной (связанной с арматурой k-го се-
мейства) систем координат.
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4. Поля напряжений, деформаций и их скоростей усредняются по объему 
представительного элемента КМ, т.е. на основании допущения 3 – пропор-
ционально относительному объемному содержанию mk (0 ≤ k ≤ N) каждого фа-
зового материала, где

	 0
1

1 .
N

k
k=

m = − m∑ 	 (2.33)

5. Термомеханическое поведение k-го компонента композиции описыва-
ется определяющими соотношениями (2.21) и (2.22) или в рассматриваемый 
дискретный момент времени tn+1 – матричным равенством (2.30) при учете 
выражений (2.22), (2.25), (2.29) и (2.31).

Используя эти допущения и повторяя рассуждения из работ [27–30], при 
+= 1nt t  на текущей итерации метода переменных параметров упругости по-

лучим следующее определяющее соотношение для КМ, записанное в матрич-
ной форме:

	 , , , ,...
1 1 1 1

0 1 2
n n n n

n
+ + + +
= + =B ps e 	 (2.34)

где при учете равенства (2.33) имеем выражения

, , ,

, , , , ,

1
0 0 0 0

1 1

1 1
0

1 1

1

N Nmm m m m m m m m m m m m m

k k k k k k k
k k

N N m mm m m m m m m m

k k k k k k k k k k
k k

m n

−

= =

− −

= =

   
≡ m + m ≡ − ≡ m + m +   
   

≡ m + m ≡ m ≡ ≡ = +

∑ ∑

∑ ∑

B B B E H p f B g f p p B r

H I E g r r D E D Cς

	 (2.35)

s и e – шестикомпонентные вектор-столбцы осредненных напряжений sij и 
деформаций eij в композиции, имеющие структуру, аналогичную (2.24); I – 
единичная 6×6-матрица; B, Ek и Ck – 6×6-матрицы; Dk

–1 и H–1 – матрицы, 
обратные 6×6-матрицам Dk и H; p, f, g, rk и �k – шестикомпонентные век-
тор-столбцы. Элементы матриц Ck = (cij

(k)) и Dk = (dij
(k)), а также вектор-столбца 

�k = (ςi
(k)) вычисляются по формулам:

	

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ, , , ,

, , , , , , ,

6 6
0

1 1 1 1
1 1

6
0

1

0

2 6 1 6 1 1

m m m m m m
k k k k k k k k k

ij ijil lj il ljj j j
l l

m m m
k k k

i il l l
l

c d q c g b d g b

g p p i j k N m n

= =

=

= = = = ς =

ς = − = = ≤ ≤ = +

∑ ∑

∑
	 (2.36)

где

	
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ..., , ...

, ..., , .
11 11 11 11 12 12 12 12 12 1116 16

21 11 11 22 12 2161 61 66 66

2 2

2 2 1

k k k k k k k k k k k k

k k k k k k k k k k

g q l l g q l l g q l l

g q l l g q l l l l k N

= = = = = =

= = = = + ≤ ≤
	 (2.37)

Не выписанные в равенствах (2.37) элементы 6×6-матриц Gk = (gij
(k)) и 

Qk = (qij
(k)) приведены в табл. (21.40) и (21.44) в [33]. Матрицы Gk и Qk задают 
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преобразования вектор-столбцов sk и ek (см. соотношения (2.24)) при пере-
ходе от глобальной ортогональной системы координат xj к локальной ортого-
нальной системе xi

(k), направляющие косинусы lik
(k) (i, j = 1, 3 и 1 ≤ k ≤ N) между 

которыми определяются равенствами (2.32).
В процессе вывода соотношений (2.34) и (2.35) попутно получаются мат-

ричные равенства

	 , , , .1 1
0 0 1 1

m mm m m m m m m

k k k k N m n− −− = + ≤ ≤ = +H H g E re = e e e 	 (2.38)

Первое соотношение (2.38) в момент времени tn+1 на текущей итерации 
позволяет выразить деформации связующей матрицы e0 через осредненные 
деформации композиции e, а второе равенство (2.38) – деформации арми-
рующих элементов k-го семейства ek через деформации связующего e0, т.е. в 
конечном итоге через e.

В выражении для величины Yk (см. соотношения (2.22)) неопределенным 
до сих пор оставался параметр поврежденности материала k-й фазы компо-
зиции wk (0 ≤ k ≤ N). Анализ экспериментальных данных показал [14]: в слу-
чае кратковременной ползучести металлических образцов, испытывающих 
одноосное растяжение, в качестве параметра поврежденности w можно ис-
пользовать величину w = e/ec, где e – линейная механическая (без учета тем-
пературного удлинения) деформация образца в осевом направлении; ec > 0 – 
предельно допустимое (критическое) значение величины e, при достижении 
которой скорость деформации кратковременной ползучести неограниченно 
возрастает – кинематический критерий разрушения материала (ec – харак-
теристика материала). Предполагая, что последнее равенство справедливо не 
только при растяжении, но и при сжатии, получим следующее выражение: 
w = | e |/ec. Запишем здесь | e |, используя инварианты тензора механических де-
формаций [7]: | e | = | e0 | + e*, где e* – интенсивность деформаций, e0 – средняя 
линейная механическая деформация. Обобщая последнее равенство на слу-
чай сложного деформированного состояния, параметр поврежденности k-го 
материала металлокомпозиции в случае кратковременной ползучести можно 
представить так:

	 ( ) ( ) ( )(| | ) / , .c0 0k k k
k k N∗w = e +e e ≤ ≤ 	 (2.39)

Здесь [7, 8]:

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( )
( )

,

, ;
0

2 2 2 2 2 2
11 22 22 33 33 11 12 23 31

0

2
6

3

0
3

k k k k k k k k kk

tk
k ll

k

t

dt k N

∗e = e − e + e − e + e − e + e + e + e

e
e = − a Q ≤ ≤∫ 

	(2.40)

ec
(k) – механическая характеристика k-го компонента композиции, которая 

может быть функцией температуры: ec
(k) =ec

(k)(Q).
Параметр поврежденности wk при учете дополнительных данных экспери-

ментов может быть введен отлично от формул (2.39) и (2.40). Так, например, 
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могут быть учтены различия значений ec
(k) при растяжении и сжатии k-го ма-

териала композиции [18].
В подавляющем большинстве случаев задачи механики композитных 

конструкций из неоднородных армированных материалов формулируются 
в перемещениях [2–4, 27–30, 33]. Поэтому если в рассматриваемый момент 
времени tn+1 на текущей итерации метода переменных параметров упругости 
уже определены приближения перемещений из решения соответствующей 
краевой задачи, то, используя общеизвестные кинематические соотношения 
[4, 7, 8, 13, 18, 19, 33] (в частности соотношения Коши), можно определить 
приближения осредненных деформаций композиции n+

e
1
ij, затем по формулам 

(2.38) можно вычислить деформации компонентов композиции, а по форму-
лам (2.30) – напряжения в этих же материалах. При этом, согласно соотноше-
ниям (2.22), (2.25) и (2.31), при вычислении параметра переключения pk (см. 
соответствующее выражение в (2.22)) целесообразно скорости напряжений  .sij

(k) и температуры  
.
Q приближенно определять по формулам, аналогичным 

(2.26) при учете обозначений (2.29) и сделанного выше замечания. Интегралы 
же в соотношениях (2.6) и (2.40) также целесообразно вычислять приближен-
но, используя формулу трапеций с шагом D.

Выше для линеаризации равенств (2.30) предлагалось использовать метод, 
аналогичный методу переменных параметров упругости [13, 27, 32]. Предва-
рительные расчеты продемонстрировали: сходимость такого метода наруша-
ется на последней стадии кратковременной ползучести – стадии предразру-
шения – одного из субструктурных элементов металлокомпозиции. Восстано-
вить сходимость данного итерационного процесса можно за счет уменьшения 
шага по времени D (см. соотношения (2.31)).

3. Обсуждение результатов расчетов. Как правило, эффект армирования 
наиболее ярко проявляется в тонкостенных силовых элементах конструкций 
типа пластин и оболочек, в которых часто реализуется напряженное состоя-
ние, близкое к плоскому: например, основное безмоментное состояние в обо-
лочках [1, 3, 7, 13, 19, 33]. Поэтому для более наглядной и простой демонстра-
ции влияния параметров армирования на кратковременную ползучесть 
тонкостенного КМ-изделия рассмотрим безмоментное состояние тонкой 
металлокомпозитной цилиндрической оболочки длиной L, радиуса R = 0.5 м 
и толщиной H = 2h = 5 мм (H/R = 1/100), так как именно такие армированные 
оболочки чаще всего используются на практике [2, 3, 5]. Глобальную систе-
му координат xi (i = 1, 2, 3) введем следующим образом (рис. 2): x1 – осевая 
(0 ≤ x1 ≤ L), x2 – окружная (0 ≤ x2 ≤ 2pR) и x3 – радиальная (R – h ≤ x3 ≤ R + h) коор-
динаты. При указанном типе напряженного состояния в такой конструкции 
ее целесообразно перекрестно армировать по эквидистантным цилиндриче-
ским поверхностям x3 = const [3]; при этом, согласно рис. 1, в формулах (2.32) 
необходимо принять qk = p/2 (1 ≤ k ≤ N).

Рассматриваются две однородные структуры многонаправленного армиро-
вания с симметричной укладкой волокон относительно направлений x1 и x2. 
Первая структура состоит из двух (N = 2) семейств проволок, намотанных по 
симметричным направлениям (см. рис. 2б)
	 ( ).2 1 const 2Nj = −j = = 	 (3.1)
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Вторая структура состоит из четырех (N = 4) семейств проволок (рис. 3, на 
котором армирующие элементы обозначены номерами 1–4), и для углов на-
мотки jk (1 ≤ k ≤ N) выполняются равенства:
	 , / , , ( ).2 1 2const 2 1 2 4n n n N+j = −j = j = j + p = = 	 (3.2)

В обоих случаях суммарная плотность армирования 

	
1

N

k
k

∑
=

m = m∑ 	 (3.3)

фиксирована: mS = 0.4, а плотности армирования всех семейств проволок оди-
наковы (mk = m1, 1 ≤ k ≤ N), т.е. на основании формулы (3.3) вычисляются так:
	 / , 1 .k N k N∑m = m ≤ ≤ 	 (3.4)

Металлокомпозиции представляют собой связующую матрицу из меди, 
усиленной проволоками из стали У8А по направлениям (3.1) или (3.2) с плот-
ностями армирования (3.4). Ориентировочные физико-механические харак-
теристики материалов композиций представлены в табл. 1. Для стали У8А, 
характеристики, приведенные в табл. 1, аппроксимировались линейно по тем-
пературе Q, а для меди – квадратично по Q (за исключением величин mk и Bk). 
Так как в открытой печати отсутствуют значения mk и Bk для рассматриваемых 
материалов при Q = 20 °C, то при этой температуре естественного состояния 
композиций для стали У8А указанные величины условно принимались рав-
ными значениям при Q = 200 °C, а для меди – при Q = 165 °C (с кусочно-ли-
нейной их аппроксимацией по Q). Как и в работе [14], в формулах (2.18) и 
(2.22) использовались значения параметров gk = dk = 1 (1 ≤ k ≤ N).

Рис. 2. Цилиндрические оболочки: закрепленная на левой и нагруженная на правой 
кромках (a), снабженная днищами (б).

(a)

(б)
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Рассматривались четыре вида механического нагружения КМ-конст- 
рукции.

1. Деформирование только под действием внутреннего давления p; осевое 
T11 (см. рис. 2,a) и окружное T12 мембранные усилия отсутствуют. При этом по-
лучаем следующие выражения для мембранных усилий Tij = Hsij, i, j = 1, 2 [3, 36]:

	 , .11 12 21 220T T T T Rp= = ≡ = 	 (3.5)

(Такой вид напряженного состояния обычно реализуется в кольцах, когда 
L << R [19].)

2. Деформирование под действием внутреннего давления p и осевого рас-
тягивающего усилия T11 > 0, соответствующего цилиндрической оболочке с 
днищами (см. рис. 2,b); скручивающее усилие T12 отсутствует, т.е. имеем [3, 
36]:

Рис. 3. Многонаправленная симметричная структура армирования с четырьмя семейства-
ми силовых элементов.

Таблица 1. Физико-механические характеристики материалов фаз металло
композиций [1, 34, 35]

Характеристика 
материала

Медное связующее (k = 0) Стальная проволока 
У8А (1 ≤ k ≤ N)

Q = 20 °C Q = 165 °C Q = 235 °C Q = 20 °C Q = 200 °C
Ek, ГПа 128 115 107 210 200
nk 0.320 0.330 0.334 0.300 0.310
ss(k), МПа 340 310 295 3968 3971
–Ek, ГПа 0.992 0.985 0.980 5.232 5.543
ec

(k) 0.060 0.071 0.075 0.082 0.089
ak · 106, K–1 17.7 18.1 18.3 12.3 12.5
mk — 1.60 2.16 — 24.98
Bk, (МПа)–mk · ч–1 — 3.650 · 10–10 5.630 · 10–9 — 1.054 · 10–84
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	 11 12 21 22/ 2, 0, .T Rp T T T Rp= = ≡ = 	 (3.6)
3. Деформирование под действием внутреннего давления p и осевого сжи-

мающего усилия T11 < 0, равного по модулю значению T11 в равенствах (3.6); 
скручивающее усилие T12 по-прежнему отсутствует, т.е. имеем:
	 11 12 21 22/ 2, 0, .T Rp T T T Rp= − = ≡ = 	 (3.7)

4. Общий случай деформирования под действием внутреннего давления p, 
осевого растягивающего усилия T11 > 0, соответствующего оболочке с днища-
ми (см. первое равенство (3.6)) и скручивающего усилия T12, пропорциональ-
ного p, а именно:
	 11 12 21 22/ 2, 5 / 4, .T Rp T T Rp T Rp= = = = 	 (3.8)

Условия термосилового нагружения КМ-конструкции предполагались сле-
дующие. В течение одной минуты оболочка нагревалась от температуры есте-
ственного состояния Q = Q0 = 20 °C до “рабочей” температуры Q = Q* = 165 °C 
или Q = Q* = 235 °C по линейному закону по времени t, после чего температура 
Q фиксировалась на уровне Q*:

	
, ,

( )
, , ,

0
0 0

0 0

0 0 1 мин.

t t t t
t t t

t t t tt

t t t t

∗
∗ ∗

∗ ∗

∗ ∗ ∗

− − Q + Q ≤ ≤ − −Q = 
Q > = =

	 (3.9)

Одновременно с этим также в течение одной минуты по линейному зако-
ну по времени t возрастало внутреннее давление в конструкции от нулевого 
значения при t  ≤  t0 до “рабочего” значения p* = 1 МПа, затем давление p оста-
валось фиксированным и равным p*:

	

, ,

( ) , ,

, , ,

0

0
0

0

0

0

0 1 мин.

t t

t t
p t p t t t

t t

p t t t t

∗ ∗
∗

∗ ∗ ∗

≤
 −= < ≤ −
 > = =

	 (3.10)

На рис. 4–6 изображены зависимости wk(t), полученные при некоторых 
значениях углов армирования j1 в случаях намотки двух (рис. 4 и 5) или 
четырех (рис. 6) семейств проволок. Кривые на рис. 4 и 6 рассчитаны при 
рабочей температуре Q* = 165 °C (см. соотношение (3.9)), а на рис. 5 – при 
Q* = 235 °C. Кривые на рис. 4a, 5a и 6 определены при механическом нагру-
жении оболочки, задаваемом формулами (3.6) и (3.10), а на рис. 4б и 5б – ра-
венствами (3.8) и (3.10) – общий случай. Кривые 1–3 на рис. 4–6 характери-
зуют поврежденность связующего материала КМ-конструкции (k = 0); кривые 
1′–3′ – проволок первого семейства (k = 1), а кривые 1″–3″ – проволок вто-
рого семейства (k = 2). На рис. 4a, 5a и 6 кривые с номерами, помеченными 
одним и двумя штрихами, полностью совпадают, что является следствием 
симметрии рассматриваемых структур армирования относительно направле-
ний x1 и x2 (см. соотношения (3.1) и (3.2)) и спецификой механического на-
гружения конструкции в этих случаях (см. равенства (3.6) и (3.10)), а именно 
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отсутствием скручивания цилиндрической оболочки (T12 = T21 ≡ 0). Кроме 
того, на рис. 4a и 5a,б кривые с номерами 1′, 1″, 2′ и 2″ не изображены, что-
бы не загромождать эти рисунки: на соответствующих временных интервалах 
(см. кривые 1 и 2 на рис. 4a и 5a,b) кривые 1′, 1″, 2′ и 2″ визуально почти не 
отличаются от кривых 3′ и 3″.

Кривые с номерами 1, 2 и 3 (как со штрихами, так и без них) на рис. 4a 
рассчитаны при значениях угла намотки j1 = 53°, 65° и 69° соответственно, на 
рис. 4б – при j1 = 46°, 50° и 54°, на рис. 5,a – при j1 = 77°, 81° и 82°, на рис. 5б – 
при j1 = 52°30′, 53°30′ и 54°54′, а на рис. 6 – при j1 = 0°, 25° и 30°. На основании 
соотношений (2.39) и (2.40) кривые на рис. 4–6 условно можно трактовать 
как кривые кратковременной ползучести материалов фаз рассматриваемых 
металлокомпозиций при разных видах обобщенного плоского напряженного 
состояния sij = Tij/H, i, j = 1, 2 (см. соотношения (3.6) и (3.8)).

На кривых 3 на рис. 4a и 5a, а также на кривых 3 и 3′ на рис. 4б, 5б и 
на кривой 2′ на рис. 4б отчетливо наблюдается достаточно продолжительная 

Рис. 4. Зависимости параметров поврежденности материалов фаз металлокомпозиции 
цилиндрической оболочки от времени t [ч] в случае намотки двух семейств арматуры, 
рассчитанные при рабочей температуре Q* = 165 °C: a) – механическое нагружение вида 
(3.6), б) – механическое нагружение вида (3.8).

(a)

(б)
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стадия установившейся ползучести и третья стадия предразрушения для ма-
териала связующей матрицы и арматуры первого семейства. Наиболее ярко 
третья стадия ползучести проявляется на кривых 3 и 3′ на рис. 4б и 5б, причем 
с повышением температуры стадийность на кривых ползучести выявляется 
все более четко (ср. кривые на рис. 4 и 5). Поведение кривых 1 и 2 на рис. 4 и 
5 свидетельствует о том, что после завершения процесса термомеханического 
нагружения цилиндрической КМ-оболочки (0 ≤ t ≤ 1 мин = 0.0167 ч; см. соот-
ношения (3.9) и (3.10)) материал связующей матрицы при соответствующих 
углах намотки j1 деформируется, либо почти полностью минуя стадию уста-
новившейся ползучести (кривые 1), либо почти минуя эту стадию (кривые 2). 
Кривые 3′ и 3″ на рис. 4a и 5a, а также кривые 3″ на рис. 4б и 5б при t > 0.0167 ч, 
т.е. после окончания процесса нагружения конструкции, визуально не отлича-
ются от горизонтальных линий. Это означает, что при рассматриваемых видах 
нагружения оболочки в соответствующих семействах арматуры развивается 
ограниченная ползучесть, которая, как правило, характерна для полимерных 
однородных материалов, а не для металлов [19]. Согласно поведению кривых 

Рис. 5. Зависимости параметров поврежденности материалов фаз металлокомпозиции 
цилиндрической оболочки от времени t [ч] в случае намотки двух семейств арматуры, 
рассчитанные при рабочей температуре Q* = 235 °C: a) – механическое нагружение вида 
(3.6), б) – механическое нагружение вида (3.8).

(a)

(б)
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1–3 на рис. 4 и 5, а также кривых 2′ и 3′ на рис. 4б, даже относительно малое 
изменение угла намотки j1 (например на рис. 5б – с шагом порядка 1°) может 
оказать существенное влияние на механический отклик оболочки из металло-
композита, работающей в условиях кратковременной ползучести. При этом 
для рассматриваемых видов термосилового нагружения КМ-конструкции раз-
рушение в первую очередь начинается в связующем материале. (Отметим: при 
моделировании линейно-упругого деформирования волокнистых цилиндри-
ческих оболочек их механический отклик незначительно зависит от малого 
изменения углов намотки, если отношение модулей упругости связующего и 
арматуры имеет тот же порядок, что и в металлокомпозициях, т.е. структура 
армирования обладает слабо выраженной анизотропией [2, 3, 33]. Так, соглас-
но данным табл. 1, при Q = 20 °C имеем E0/Ek = 0.61 ~ 0.1 (1 ≤  k ≤ N) – слабая 
анизотропия.)

На первый взгляд поведение зависимостей wk(t) на рис. 4б и 5б качествен-
но схоже с поведением кривых на рис. 4a и 5a. Однако имеются и принци-
пиальные различия между этими рисунками. Так, кривые на рис. 4б и 5б со-
ответствуют общему виду механического нагружения КМ-конструкции, при 
котором цилиндрическая оболочка помимо всего прочего дополнительно 
скручивается (см. формулы (3.8)). В этих случаях направления главных осред-
ненных напряжений в металлокомпозиции изделия не совпадают с направле-
ниями x1 и x2, т.е. с осями симметрии структуры армирования (см. равенство 
(3.1) и рис. 2,b). Поэтому кривые 3′ на рис. 4б и 5б не совпадают с кривыми 
3″. Аналогично, и кривая 2′ на рис. 4б не совпадает с кривой 2″, которая на 
этом рисунке не изображена, так как на соответствующем временном интер-
вале визуально почти не отличается от кривой 3″. Поведение кривых 3″ на 
рис. 4б и 5б при t > 0.0167 ч демонстрирует, что и в общем случае нагружения 

Рис. 6. Зависимости параметров поврежденности материалов фаз металлокомпозиции 
цилиндрической оболочки от времени t [ч] в случае намотки четырех семейств арматуры, 
рассчитанные при рабочей температуре Q* = 165 °C и механическое нагружение вида (3.6).
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цилиндрической КМ-оболочки армирующие элементы второго семейства 
(k = 2), как и на рис. 4a и 5a, деформируются в условиях ограниченной пол-
зучести. Кроме того, на рис. 4б и 5б, в отличие от рис. 4a и 5a, более ярко 
проявились особенности поведения кривых на начальном интервале времени 
0 ≤ t ≤ 0.0167 ч, в течение которого возрастает термомеханическая нагрузка (см. 
соотношения (3.9) и (3.10) при учете равенств (3.6) и (3.8)).

На рис. 7 и 8 изображены зависимости времени начального разрушения 
tc связующего материала КМ-оболочек от угла намотки волокон первого се-
мейства j1. При этом критическое время tc определяется выполнением усло-
вия w0(tc) = 1. (Во всех проведенных расчетах аналогичные равенства для ар-
матуры не достигались.) На рис. 7 представлены зависимости tc(j1), получен-
ные при рабочей температуре Q* = 165 °C, а на рис. 8 – при Q* = 235 °C. На 
рис. 7a и 8a кривые рассчитаны для случая намотки двух семейств арматуры 

(a)

(б)

Рис. 7. Зависимости предельного (критического) времени разрушения tc [ч] цилиндриче-
ской металлокомпозитной оболочки от угла намотки j1 [град], рассчитанные при рабочей 
температуре Q* = 165 °C и разных видах ее механического нагружения в случаях укладки 
двух (a) и четырех (б) семейств арматуры.
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(см. равенство (3.1) и рис. 2б), а на рис. 7б и 8б – четырех семейств проволок 
(см. соотношения (3.2) и рис. 3). Номера кривых на рис. 7 и 8 соответствуют 
номерам видов механического нагружения цилиндрической оболочки (см. 
выражения (3.5)–(3.8)).

Поведение кривых на рис. 7a и особенно на рис. 8a свидетельствует о том, 
что в достаточно широком диапазоне изменения угла намотки j1 время tc яв-
ляется очень малым, например на рис. 8a – порядка 0.01 ч = 0.6 мин. Следова-
тельно, при соответствующих углах армирования оболочки двумя семейства-
ми проволок разрушение связующего в такой КМ-конструкции начнется еще 
до или почти сразу после момента завершения ее термомеханического нагру-
жения: tc ≈ t* (см. соотношения (3.9) и (3.10)). Естественно, что такие структу-
ры намотки цилиндрической оболочки являются неэффективными. Однако 
при других углах армирования j1, например при 75° ≤ j1 ≤ 90° в случае нагру-
жения вида (3.5) и Q* = 165 °C (см. кривую 1 на рис. 7a) или при 53° ≤ j1 ≤ 57° 

(a)

(б)

Рис. 8. Зависимости предельного (критического) времени разрушения tc [ч] цилиндриче-
ской металлокомпозитной оболочки от угла намотки j1 [град], рассчитанные при рабочей 
температуре Q* = 235 °C и разных видах ее механического нагружения в случаях укладки 
двух (a) и четырех (б) семейств арматуры.
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в случае нагружения вида (3.6) и Q* = 165 °C (см. кривую 2 на рис. 7a), время 
tc(j1) может быть много больше 1 ч. При увеличении температуры аналогич-
ные диапазоны изменения углов намотки j1, при которых КМ-конструкция 
обладает высокой эффективностью, резко сужаются (см. поведение кривых 1 
и 2 на рис. 8a, рассчитанные при Q* = 235 °C). При указанных углах j1, когда 
tc(j1) >> 1 ч, ползучесть КМ-оболочки уже нельзя рассматривать как крат-
ковременную, поэтому для адекватного описания механического поведения 
армированной конструкции в этих случаях необходимо привлекать более об-
щие теории ползучести, учитывающие и ее первую стадию – стадию упроч-
нения [7, 13, 15, 18, 19, 22]. (Моделирование соответствующего неупругого 
деформирования металлокомпозитных конструкций выходит за рамки данной 
работы.) Если предполагается разовая эксплуатация цилиндрической оболоч-
ки в условиях кратковременной ползучести, то при углах намотки j1, для ко-
торых, согласно поведению кривых 1 и 2 на рис. 7a и 8a, tc(j1) >> 1 ч, целесо-
образно существенно уменьшить интенсивности армирования mk, сократив 
тем самым общий расход волокон, либо при фиксированных значениях mk 
(1 ≤ k ≤ N) сократить общий объем материала КМ-конструкции за счет умень-
шения ее толщины.

Поведение кривых 1 и 2 на рис. 7a и особенно на рис. 8a свидетельствует 
о том, что на некоторых интервалах изменения углов намотки j1 зависимо-
сти tc(j1) обладают очень большой изменяемостью. Следовательно, для по-
лучения эффективных структур армирования оболочки при некоторых видах 
ее термосилового нагружения (например, при выполнении условий (3.5) или 
(3.6)) требуется высокоточное соблюдение направления намотки, при изго-
товлении соответствующего КМ-изделия. В частности, согласно поведению 
кривых 2 на рис. 8a, при N = 2 и нагружении вида (3.6) в случае рабочей тем-
пературы Q* = 235 °C эффективными для цилиндрической оболочки будут 
лишь структуры с углами намотки, изменяющимися в очень узком диапазоне 
54°30′ ≤ j1 ≤ 55°30′.

Из поведения кривой 4 на рис. 7a видно, что в общем случае нагружения 
КМ-конструкции (см. равенства (3.8)) при рабочей температуре Q* = 165 °C 
армирование цилиндрической оболочки двумя семействами проволок с 
углами намотки j1 = –j2 = 55° позволяет обеспечить ее работоспособность в 
течение времени порядка 1 ч (точнее tc(55°) = 0.808 ч). Согласно же поведе-
нию кривой 4 на рис. 8a, такое армирование КМ-оболочки при тех же усло-
виях механического нагружения, но при повышенной рабочей температуре 
Q* = 235 °C обеспечивает работоспособность металлокомпозитной конструк-
ции менее чем в течение получаса (точнее tc(55°) = 0.351 ч).

Поведение кривой 3 на рис. 7a показывает, что из всех рассматриваемых 
видов механического нагружения КМ-оболочки самым неблагоприятным 
при ее армировании двумя семействами проволок является случай, когда 
конструкция нагружена внутренним давлением и сжата в осевом направлении 
(см. соотношения (3.7)). Вид этой кривой свидетельствует о том, что при та-
ком типе нагружения и рабочей температуре Q* = 165 °C наилучшим является 
армирование в окружном направлении (j1 = 90°). Однако критическое время 
работоспособности конструкции даже в этом случае является весьма малым: 
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tc(90°) = 0.159 ч. С повышением же температуры ситуация в этом случае резко 
ухудшается. Так, кривая 3 на рис. 8a, рассчитанная при рабочей температуре 
Q* = 235 °C, визуально практически не отличается от оси абсцисс. (Поведение 
этой кривой качественно аналогично поведению кривой 3 на рис. 7a, но орди-
наты точек на кривой 3 на рис. 8a изменяются в очень узком диапазоне 4.56 · 
10–3 ≤ tc(j1) ≤ 9.75 · 10–3 ч.) Таким образом, при термосиловом нагружении ци-
линдрической оболочки вида (3.7), (3.9) и (3.10) ее намотка двумя семейства-
ми волокон по направлениям (3.1) при любых углах армирования j1 является 
неэффективной как при рабочей температуре Q* = 235 °C (см. кривую 3 на 
рис. 8a), так и при Q* = 165 °C (см. кривую 3 на рис. 7a). Очевидно, что в этих 
случаях целесообразно использовать другой тип структуры, например намотку 
армирующих проволок по четырем (N = 4) направлениям (3.2) (см. рис. 3), 
учитывая при этом выражения (3.3) и (3.4).

Как уже отмечалось, соответствующие зависимости tc(j1), рассчитанные 
при N = 4 и всех рассматриваемых видах термосилового нагружения цилин-
дрической оболочки, представлены на рис. 7b (при Q* = 165 °C) и 8b (при 
Q* = 235 °C). Поведение кривых 3 на этих рисунках свидетельствует о том, что 
при намотке четырех семейств проволок в случае нагружения вида (3.7), в от-
личие от рис. 7a и 8a, существует достаточно широкий диапазон изменения 
углов армирования j1, при которых металлокомпозитная оболочка имеет до-
статочно длительный расчетный срок службы, когда tc(j1) >> 1 ч. Аналогично, 
формы кривых 1 и 2 на рис. 7b и 8b демонстрируют, что и в случаях нагруже-
ния вида (3.5) и (3.6) также имеются достаточно широкие (гораздо большие, 
чем на рис. 7a и 8a) диапазоны изменения углов намотки j1 в структуре (3.2), 
при которых армированная цилиндрическая оболочка обладает весьма дли-
тельной расчетной прочностью. Как видно, кривые 1–3 на рис. 7b и 8b имеют 
две ветви; указанные диапазоны изменения угла j1 расположены левее левой 
ветви соответствующей кривой и правее правой ее ветви.

Однако сравнение кривых 4 на рис. 7a,b и 8a,b (при одинаковых значе-
ниях рабочей температуры Q*) показывает, что в общем случае нагружения 
цилиндрической оболочки (см. равенства (3.8)) замена структуры армирова-
ния (3.1) на структуру (3.2) приводит к уменьшению расчетного срока службы 
исследуемого КМ-изделия. При таком виде нагружения оболочка дополни-
тельно скручивается (T12 = T21 > 0), поэтому направления x1 и x2 не совпадают 
с направлениями главных напряжений в композиции sij. Направления же ор-
тотропии в рассматриваемых двух структурах армирования (см. равенства (3.1) 
и (3.2)), наоборот, совпадают с продольным x1 и окружным x2 направлениями 
в данной конструкции. Такое рассогласование направлений главных напря-
жений в композиции и направлений ее ортотропии и является причиной того, 
что в случае нагружения вида (3.8) оба варианта армирования обеспечива-
ют достаточно низкую продолжительность работоспособности КМ-изделия 
по сравнению с другими видами ее термосилового нагружения (ср. кривые 4 
с кривыми 1–3 на рис. 7b и 8b, а также кривые 4 с кривыми 1 и 2 на рис. 7a и 
8a). Для повышения эффективности армирования цилиндрической оболоч-
ки при ее нагружении вида (3.8) необходимо отказаться от условия симмет-
ричной намотки и осуществлять целевую оптимизацию (по условию  max tc) 
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на структурах армирования более общего вида, чем задаваемых равенствами 
(3.1) и (3.2).

Выше обсуждались зависимости tc(j1) в случае нагружения цилиндриче-
ской КМ-оболочки внутренним давлением. Если же такая конструкция на-
гружается внешним давлением, то в равенствах (3.5)–(3.8) следует p заменить 
на –p при сохранении выражений (3.9) и (3.10). При этом зависимости tc(j1) 
не будут полностью совпадать с приведенными на рис. 7 и 8, однако визуаль-
но они практически неотличимы от кривых, изображенных на этих рисун-
ках. Кроме того, если оболочка нагружается только в осевом направлении, т.е. 
в отличие от соотношений (3.5) имеем:

	 11 12 21 22, 0,T Rp T T T= = = ≡

где под p следует понимать не внутреннее или внешнее давление, а некоторый 
параметр нагружения, изменяющийся во времени по закону (3.10), то в слу-
чае намотки двумя семействами проволок зависимости tc(j1) будут зеркально 
симметричны кривым 1 на рис. 7a и 8a относительно вертикальной прямой 
j1 = 45°. В случае же укладки четырех семейств арматуры зависимости tc(j1) 
при таком виде нагружения совпадают с кривыми 1 на рис. 7b и 8b.

Особый интерес вызывает изучение зависимостей wk(t) при тех углах на-
мотки j1, при которых КМ-оболочка обладает достаточно длительной проч-
ностью, т.е. когда tc(j1) >> 1 ч. Именно поэтому на рис. 6 представлены со-
ответствующие кривые, полученные при рабочей температуре Q* = 165 °C 
в случае нагружения цилиндрической оболочки с днищами (см. соотношения 
(3.6)), армированной четырьмя семействами проволок (см. равенства (3.2)) 
при значениях угла намотки j1 = 0° (кривые 1, 1′ и 1″), j1 = 25° (кривые 2, 2′ и 
2″) и j1 = 30° (кривые 3, 3′ и 3″). Поведение кривой 2 на рис. 7b свидетельству-
ет о том, что при таких значениях углов j1 действительно выполняется нера-
венство tc(j1) >> 1 ч. Особенность поведения всех кривых на рис. 6 при t > 0.2 ч 
характеризует ползучесть материалов всех компонентов металлокомпозиции 
цилиндрической оболочки при указанных значениях j1 как ограниченную. 
Именно поэтому при рассматриваемых углах намотки арматуры получается 
критическое время tc(j1) >> 1 ч.

Ординаты точек на кривых 1, 2 и 3 (а также и на кривых 1′, 2′ и 3′) на 
рис. 6 существенно различны, т.е. в значительной степени зависят от угла ар-
мирования j1. Следовательно, представляет интерес изучение зависимостей 
параметров поврежденности компонентов композиции wk от угла намотки j1 
при достаточно больших моментах времени в тех случаях, когда имеет ме-
сто сильное неравенство tc(j1) >> 1 ч. В связи с этим на рис. 9 представлены 
кривые, соответствующие указанным зависимостям wk

*(j1), полученным для 
момента времени t = 4 ч. Кривые на рис. 9 рассчитаны при N = 4 (см. соотно-
шения (3.2)) и рабочей температуре Q* = 165 °C. Кривые 1–3 соответствуют 
связующей матрице (k = 0), а кривые 1′–3′ – армирующим элементам пер-
вого семейства (k = 1). Номера кривых на рис. 9 (со штрихами и без них) со-
ответствуют номерам видов механического нагружения рассматриваемой 
КМ-конструкции (см. равенства (3.5)–(3.7)). В силу симметрии структуры 
армирования относительно направления x1 (см. равенства (3.2)) и отсутствия 
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скручивания цилиндрической оболочки (T12 = T21 ≡ 0) зависимости w2
*(j1) для 

арматуры второго семейства полностью совпадают с кривыми 1′–3′ на рис. 9.
Из рис. 9 видно, что зависимости wk

*(j1) имеют значительную изменяе-
мость, особенно для связующего материала (см. кривые 1–3). При этом (за ис-
ключением кривой 2′) наименьшие значения wk

* достигаются при углах j1 = 0° 
и j1 = 90°, т.е. при намотке арматуры по направлениям главных напряжений 
в КМ-конструкции (см. рис. 3 и соотношения (3.2)–(3.7)). Следовательно, 
при работе маталлокомпозитного изделия в условиях кратковременной пол-
зучести целесообразно в нем реализовать рациональные структуры армирова-
ния, например укладывая армирующие элементы по направлениям главных 
напряжений в его композиции, если в процессе эксплуатации КМ-конструк-
ции эти направления не изменяются (как это и имеет место в рассматривае-
мых случаях). Такое целевое управление структурой армирования позволяет 
существенно снизить поврежденность субструктурных элементов компози-
ции изделия на заданных интервалах времени, а значит позволяет уменьшить 
расход арматуры или материалоемкость всей КМ-конструкции в целом при 
фиксированных сроках ее эксплуатации.

Заключение. Разработанная структурная численно-аналитическая модель 
механики композиционных материалов, использующая алгоритм шагов по 
времени, позволяет описывать кратковременную ползучесть металлокомпо-
зитных изделий, многонаправленно армированных непрерывными волокна-
ми (проволоками). При этом учитывается возможное пластическое дефор-
мирование всех компонентов композиции и термочувствительность их физи-
ко-механических характеристик.

Рис. 9. Зависимости параметров поврежденности фаз композиции цилиндрической обо-
лочки от угла намотки j1 [град], рассчитанные на момент времени t  = 4 ч при рабочей 
температуре Q* = 165 °C, разных видах механического нагружения и укладке четырех се-
мейств армирующих проволок.
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Расчеты, проведенные для безмоментных металлокомпозитных колец и 
цилиндрических оболочек при разных видах их механического нагружения и 
разных значениях рабочих температур, продемонстрировали: при эксплуата-
ции таких КМ-конструкций в условиях кратковременной ползучести в силу 
существенной физической нелинейности соответствующих задач варьирова-
ние структуры армирования (направлений намотки) оказывает существенно 
большее влияние на механический отклик таких изделий, чем в случаях их 
чисто термоупругого деформирования, причем с увеличением рабочей темпе-
ратуры это влияние резко возрастает. В силу этих обстоятельств особую акту-
альность приобретает проблема отыскания оптимальных или рациональных 
структур армирования КМ-конструкций, предполающихся к эксплуатации 
в условиях кратковременной ползучести. Показано: если в процессе работы 
таких изделий усредненные напряжения в их композиции изменяются про-
порционально некоторому параметру, зависящему от времени, т.е. не изме-
няются направления главных напряжений в металлокомпозиции (что имеет 
место, в частности, в безмоментных оболочках при их пропорциональном 
нагружении), то одним из критерием рационального проектирования КМ-
конструкций может служить требование намотки армирующих волокон по 
направлениям главных усредненных напряжений в их композиции. При ра-
циональных структурах армирования в процессе деформирования материалы 
фаз металлокомпозиции могут проявлять признаки ограниченной ползуче-
сти. С одной стороны, это позволяет гарантировать достаточно длительные 
сроки эксплуатации КМ-изделия с такими структурами, а с другой стороны, 
позволяет существенно снизить либо расход силовых элементов (проволок), 
либо общий объем материала конструкции, например за счет уменьшения ее 
толщины при фиксированных плотностях армирования металлокомпозиции. 
Последнее целесообразно осуществлять в тех случаях, когда расчетные сроки 
эксплуатации КМ-конструкции, работающей в условиях кратковременной 
ползучести, получаются чрезмерно избыточными.

Работа выполнена в рамках госзадания (№ госрегистрации 124021400036-7).

СПИСОК ЛИТЕРАТУРЫ

1.	  Композиционные материалы. Справочник / Под ред. Д.М. Карпиноса. Киев: Наук. 
думка, 1985. 592 с.

2.	  Абросимов Н.А., Баженов В.Г. Нелинейные задачи динамики композитных 
конструкций. Н. Новгород: Изд-во ННГУ, 2002. 400 с.

3.	  Соломонов Ю.С., Георгиевский В.П., Недбай А.Я., Андрюшин В.А. Прикладные задачи 
механики композитных цилиндрических оболочек. М.: Физматлит, 2014. 408 с.

4.	  Gibson R.F. Principles of composite material mechanics / 4rd ed. Boca Raton: CRC Press, 
Taylor & Francis Group, 2015. 815 p.

5.	  Димитриенко Ю.И. Механика композитных конструкций при высоких температу-
рах. М.: Физматлит, 2018. 448 с.

6.	  Kazanci Z. Dynamic response of composite sandwich plates subjected to time-dependent 
pressure pulses // Int. J. Non-Linear Mech. 2011. V. 46. № 5. P. 807–817. 

	 https://doi.org/10.1016/j.ijnonlinmec.2011.03.011



28	 ЯНКОВСКИЙ

7.	  Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машинострое-
ние, 1968. 400 с.

8.	  Бондарь В.С. Неупругость. Варианты теории. М.: Физматлит, 2004. 144 с.
9.	  Yonezu A., Yoneda K., Hirakata H., Sakihara M., Minoshima K. A simple method to 

evaluate anisotropic plastic properties based on dimensionless function of single spherical 
indentation – Application to SiC whisker-reinforced aluminum alloy // Mater. Sci. Eng. 
A. 2010. V. 527. № 29–30. P. 7646–7657. 

	 https://doi.org/10.1016/j.msea.2010.08.014
10.	  Panich S., Uthaisangsuk V., Suranuntchai S., Jirathearanat S. Investigation of anisotropic 

plastic deformation of advanced high strength steel // Mater. Sci. Eng. A. 2014. V. 592. 
P. 207–220. 

	 https://doi.org/10.1016/j.msea.2013.11.010
11.	  He G., Liu Y., Hammi Y., Bammann D.J., Horstemeyer M.F. A combined viscoelasticity-

viscoplasticity-anisotropic damage model with evolving internal state variables applied to 
fiber reinforced polymer composites // Mech. Adv. Mater. Struc. 2021. № 17. P. 1775–1796. 

	 https://doi.org/10.1080/15376494.2019.1709673
12.	  Nizolek T.J., Pollock T.M., McMeeking R.M. Kink band and shear band localization in 

anisotropic perfectly plastic solids // J. Mech. Phys. Solids. 2021. V. 146. P. 104183. 
https://doi.org/10.1016/j.jmps.2020.104183

13.	  Качанов Л.М. Теория ползучести. М.: Физматгиз, 1960. 455 с.
14.	  Работнов Ю.Н., Милейко С.Т. Кратковременная ползучесть. М.: Физматгиз, 1970. 

224 с.
15.	  Betten J. Creep mechanics. Berlin: Springer – Verlag, 2002. 327 p.
16.	  Vakili-Tahami F., Hayhurst D.R., Wong M.T. High-temperature creep rupture of low alloy 

ferritic steel butt-welded pipes subjected to combined internal pressure and end loading // 
Philos. Trans. R. Soc. London. Ser. A. 2005. V. 363. P. 2629–2661. 

	 https://doi.org/10.1098/rsta.2005.1583
17.	  Yao Hua-Tang, Xuan Fu-Zhen, Wang Zhengdong, Tu Shan-Tung. A review of creep 

analysis and design under multi-axial stress states // Nucl. Eng. Des. 2007. V. 237. № 
18. P. 1969–1986. 

	 https://doi.org/10.1016/j.nucengdes.2007.02.003
18.	  Локощенко А.М. Ползучесть и длительная прочность металлов. М.: Физматлит, 

2016. 504 с.
19.	  Работнов Ю.Н. Ползучесть элементов конструкций. Изд. 3-е. М.: ЛЕНАНД, 2019. 

752 с.
20.	  Chow C.L., Yang X.J., Chu Edmund. Viscoplastic constitutive modeling of anisotropic 

damage under nonproportional loading // Trans. ASME. J. Eng. Mater. Technol. 2001. 
V. 123. № 4. P. 403–408. 

	 https://doi.org/10.1115/IMECE2000-1873
21.	  Kulagin D.A., Lokoshchenko A.M. Analysis of the influence of aggressive environment 

on creep and creep rupture of rod under pure bending // Arch. Appl. Mech. 2005. V. 74. 
P. 518–525. 

	 https://doi.org/10.1007/s00419-004-0368-z
22.	  Naumenko K., Altenbach H. Modelling of creep for structural analysis. Berlin: Springer – 

Verlag, 2007. 220 p.
23.	  Апетьян В.Э., Быков Д.Л. Определение нелинейных вязкоупругих характеристик 

наполненных полимерных материалов // Космонавтика и ракетостроение. 2002. 
№ 3 (28). С. 202–214.



	 МОДЕЛИРОВАНИЕ КРАТКОВРЕМЕННОЙ ПОЛЗУЧЕСТИ...� 29

24.	  Голуб В.П., Кобзарь Ю.М., Фернати П.П. Нелинейная ползучесть волокнистых од-
нонаправленных композитов при растяжении в направлении армирования // При-
кладная механика. 2007. № 5. С. 20–34.

25.	  Куликов Р.Г., Труфанов Н.А. Применение итерационного метода к решению зада-
чи деформирования однонаправленного композиционного материала с нелиней-
но-вязкоупругим связующим // Вычислительная механика сплошных сред. 2011. 
Т. 4. № 2. С. 61–71. 

	 https://doi.org/10.7242/1999-6691/2011.4.2.14
26.	  Brassart L., Stainier L., Doghri I., Delannay L. Homogenization of elasto-(visco) plastic 

composites based on an incremental variational principle // Int. J. Plast. 2012. V. 36. 
P. 86–112. 

	 https://doi.org/10.1016/j.ijplas.2012.03.010
27.	  Янковский А.П. Моделирование установившейся ползучести перекрестно армиро-

ванных металлокомпозитов с учетом анизотропии фазовых материалов. 1. Слу-
чай пространственного армирования // Механика композитных материалов. 2013. 
Т. 49. № 3. С. 365–380.

28.	  Янковский А.П. Моделирование установившейся ползучести перекрестно армиро-
ванных металлокомпозитов с учетом анизотропии фазовых материалов. 2. Случай 
плоского армирования // Механика композитных материалов. 2013. Т. 49. № 4. 
С. 537–552.

29.	  Янковский А.П. Моделирование неустановившейся ползучести изгибаемых ар-
мированных пластин из нелинейно-наследственных материалов // Вычислитель-
ная механика сплошных сред. 2018. Т. 11. № 1. С. 92–110. 

	 https://doi.org/10.7242/1999-6691/2018.11.1.8
30.	  Янковский А.П. Моделирование неизотермического вязкоупругопластического по-

ведения гибких армированных пластин // Вычислительная механика сплошных 
сред. 2020. Т. 13. № 3. С. 350–370. 

	 https://doi.org/10.7242/1999-6691/2020.13.3.28
31.	  Деккер К., Вервер Я. Устойчивость методов Рунге – Кутты для жестких нелиней-

ных дифференциальных уравнений. М.: Мир, 1988. 334 с.
32.	  Хажинский Г.М. Модели деформирования и разрушения металлов. М: Научный 

мир, 2011. 231 с.
33.	  Малмейстер А.К., Тамуж В.П., Тетерс Г.А. Сопротивление жестких полимерных 

материалов. Рига: Зинатне, 1972. 500 с.
34.	  Безухов Н.И., Бажанов В.Л., Гольденблат И.И., Николаенко Н.А., Синюков А.М. Рас-

четы на прочность, устойчивость и колебания в условиях высоких температур / 
Под ред. И.И. Гольденблата. М.: Машиностроение, 1965. 567 с.

35.	  Писаренко Г.С., Можаровский Н.С. Уравнения и краевые задачи теории пластично-
сти и ползучести. Справочное пособие. Киев: Наук. думка, 1981. 496 с.

36.	  Reddy J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. 
2nd Ed. N.Y.: CRC Press, 2004. 831 p.



30	 ЯНКОВСКИЙ

MODELING OF SHORT-TERM CREEP OF FIBROUS 
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Absrtact – A numerical and analytical model of the structural mechanics of mul-
tidirectionally reinforced metal-composites operating under short-term creep 
conditions has been developed. The materials of the components of the metal-
composition are homogeneous and isotropic; their thermal sensitivity and thermo-
elastoplastic deformation are taken into account. Plastic deformation of the phases 
of the composition is described by the relations of the theory of flow with isotropic 
hardening. As damage parameters for the components of a metal-composition, 
their relative mechanical deformation accumulated during loading is used – the 
deformation criterion for failure during short-term creep of metals. To construct 
the specified mathematical model, due to its significant physical nonlinearity, an 
algorithm of variable time steps was used. Linearization of the governing equations 
for the components and the metal-composition as a whole at each time step is car-
ried out using a method similar to the secant modulus method. Using the example 
of moment-free cylindrical shells, it is demonstrated that, due to the essentially 
physical nonlinearity of the modeled problem, varying the reinforcement structure 
in metal-composite structures operating under conditions of short-term creep has 
a significantly greater impact on their mechanical response than when operating 
under conditions of thermoelastic deformation. With an increase in the operating 
temperature of a metal-composite product, this influence increases sharply. With 
some, in particular rational, reinforcement structures, the materials of the metal-
composition of the product can be deformed, exhibiting signs inherent in limited 
creep. With such reinforcement structures, the structure can operate effectively un-
der conditions of long-term loading, and not only under short-term creep.

Keywords: multidirectional reinforcement, short-term creep, thermoelastoplastic 
deformation, thermal sensitivity, metal-composition, structural model, time step 
algorithm
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